Research Topic

Machine Learning for Water Resources

About this Research Topic

The last few years have seen a dramatic increase in the amount of data available to model Earth and environmental systems thanks to new sensing technologies and open data policies. To make the best use of these newly available data, innovative modeling approaches are being developed, such as machine learning, which is ideal to extract valuable information from large amounts of data. This applies particularly well to modeling the water cycle, where non-linear processes are ubiquitous. For example, complexities occur at the large scale, e.g. when considering global feedbacks between hydroclimatic variables, or at smaller scales, e.g. when modeling the hydrological response of a catchment after a storm, or the spread of a contaminant in an aquifer.
This Article Collection welcomes submissions that focus on the application of machine learning approaches to better predict and understand water resources behaviors. We envision papers that have, at the same time, a component of machine learning algorithms (e.g. applications or developments in neural networks approaches in their various forms, non-parametric classification or regression on large datasets, non-parametric spatial processes modeling) as well as a component of water resources modeling (from global to local scale, encompassing e.g. atmospheric processes, surface hydrology, or subsurface flow and transport processes).
We particularly encourage in the following domains, although other topics might be of interest as well:
- Improved predictions of hydrological, hydrogeological or hydroclimatological variables
- New ways of using machine learning approaches to unravel hydrological processes (opening the black box)
- Application of machine learning in fields where it was not considered before
- Approaches where statistical learning can be seen as an advantageous alternative to physical description of a hydrological system
- Ways to address scale dependencies between punctual and areal measurements of the water cycle


Keywords: remote sensing, machine learning, water, water resources, big data, artificial intelligence, water cycle, hydrology


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

The last few years have seen a dramatic increase in the amount of data available to model Earth and environmental systems thanks to new sensing technologies and open data policies. To make the best use of these newly available data, innovative modeling approaches are being developed, such as machine learning, which is ideal to extract valuable information from large amounts of data. This applies particularly well to modeling the water cycle, where non-linear processes are ubiquitous. For example, complexities occur at the large scale, e.g. when considering global feedbacks between hydroclimatic variables, or at smaller scales, e.g. when modeling the hydrological response of a catchment after a storm, or the spread of a contaminant in an aquifer.
This Article Collection welcomes submissions that focus on the application of machine learning approaches to better predict and understand water resources behaviors. We envision papers that have, at the same time, a component of machine learning algorithms (e.g. applications or developments in neural networks approaches in their various forms, non-parametric classification or regression on large datasets, non-parametric spatial processes modeling) as well as a component of water resources modeling (from global to local scale, encompassing e.g. atmospheric processes, surface hydrology, or subsurface flow and transport processes).
We particularly encourage in the following domains, although other topics might be of interest as well:
- Improved predictions of hydrological, hydrogeological or hydroclimatological variables
- New ways of using machine learning approaches to unravel hydrological processes (opening the black box)
- Application of machine learning in fields where it was not considered before
- Approaches where statistical learning can be seen as an advantageous alternative to physical description of a hydrological system
- Ways to address scale dependencies between punctual and areal measurements of the water cycle


Keywords: remote sensing, machine learning, water, water resources, big data, artificial intelligence, water cycle, hydrology


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 May 2020 Abstract
28 September 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 May 2020 Abstract
28 September 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..