Research Topic

Transporters, physiology, efflux inhibition and the challenge of clinical implementation

  • Submission closed.

About this Research Topic

One major contributor of resistance to many classes of chemotherapeutic and antimicrobial agents is multidrug efflux systems. Efflux occurs due to the activity of membrane transport systems which also perform essential roles in cellular metabolism-physiology and exhibit activity in a wide range of organisms. ...

One major contributor of resistance to many classes of chemotherapeutic and antimicrobial agents is multidrug efflux systems. Efflux occurs due to the activity of membrane transport systems which also perform essential roles in cellular metabolism-physiology and exhibit activity in a wide range of organisms. Based on their sequence similarity and structural homology, efflux systems are classified into six super-families: ATP-binding cassettes (ABC), major facilitators (MFS), resistance-nodulation cell division (RNDs), small multidrug resistance family (SMR), multi-antimicrobial extrusion protein family (MATE), and multidrug endosomal transporters (MET). The first five families are found in microorganisms while the MET family appears restricted to higher eukaryotes. Representatives of all groups are expressed in mammalian cells. They differ in membrane topology, energy coupling mechanisms, and most importantly in substrate specificity.
Inhibition of multidrug efflux systems has been a fundamental therapeutic challenge both in cancer and infectious diseases. There are three generations of inhibitors in mammalian systems with moderate success in the clinic and virtually no evidence for successful clinical validation of efflux inhibitors in prokaryotes. The deployment and complementation of strategies involving the use for small molecule efflux inhibitors has been an active and rapidly expanding research discipline. Advances in understanding cell physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. This core information is a stepping stone in the challenge of highlighting an effective drug development path for efflux inhibition since the puzzle of clinical implementation remains unsolved. This Research Topic emphasizes in the description of a variery of efflux systems, summarizes current trends in the discovery of inhibitors, highligths distinct and overlapping roles of efflux systems in cell physiology, attempts to identify a translational path and discusses potential avenues for pharmacological inhibitor implementation and development. The restoration of antimicrobial and chemotherapeutic efficacy is definitely appealing but is not yet at a therapeutic stage. The challenge for the proposed topic is to underline the conceptual and methodological gaps barring clinical implementation for efflux inhibition.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top