Research Topic

Multi-scale modeling of brain dynamics

About this Research Topic

Global brain dynamics are strongly dependent on the interaction of several interconnected networks that differently contribute to generating them. To improve the understanding of mechanisms that subtend physiological and pathological brain dynamics, brain networks need to be investigated at different organizational scales. Both experiments on single cells in animals and at the brain circuitry level in humans can provide important insight into the functional proprieties of the brain. Nevertheless, none of them alone can provide a full description of the physiological mechanisms of brain functioning. One of the most useful approaches to combine multi-scale experimental results is computational modeling, which aims to infer biophysical mechanisms at the basis of brain functioning by simulating the behavior of interconnected networks of neurons and microcircuits.
Novel comprehensive modeling frameworks have been developed to combine mathematical data-driven models with global brain data, thus bridging the gap between microscale, mesoscale, and macroscale. Dynamic Causal Modelling (DCM) and The Virtual Brain (TVB) are two of the most used tools, which have been developed to address the issue. The strength of these frameworks is their versatility since they can exploit the rich global information provided by several non-invasive techniques, such as MRI, EEG, MEG, or PET, in order to emulate brain dynamics either related to task execution or to basal activity.
This Research Topic includes studies aiming to integrate multi-scale experimental results and allowing an in-depth investigation of the structure-function relationships at the basis of global brain dynamics, either in physiological or pathological conditions. The scope extends from studies on humans that investigate whole-brain functions in the context of physiological states, psychiatric and neurological disorders, to translational studies in animals and to computational modeling using “low levels” simulators, such as NEST and NEURON. The potential of these studies is to provide novel information into specific pathological mechanisms, such as brain rewiring and compensatory plasticity.
We welcome authors to focus on the following (but not limited to) topics:
• Characterization of whole-brain functional dynamics using techniques such as MRI, EEG, MEG, both in physiological and pathological conditions
• Characterization of microcircuit functioning using cellular and multicellular recordings, both in physiological and pathological conditions
• Computational modeling of brain dynamics, either concerning global brain activity or the activity of specific circuits
• Application of multi-scale modeling to mesoscale or macroscale experimental data


Keywords: Neuronal microcircuits, brain structure and function, brain modeling, MRI, brain dynamics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Global brain dynamics are strongly dependent on the interaction of several interconnected networks that differently contribute to generating them. To improve the understanding of mechanisms that subtend physiological and pathological brain dynamics, brain networks need to be investigated at different organizational scales. Both experiments on single cells in animals and at the brain circuitry level in humans can provide important insight into the functional proprieties of the brain. Nevertheless, none of them alone can provide a full description of the physiological mechanisms of brain functioning. One of the most useful approaches to combine multi-scale experimental results is computational modeling, which aims to infer biophysical mechanisms at the basis of brain functioning by simulating the behavior of interconnected networks of neurons and microcircuits.
Novel comprehensive modeling frameworks have been developed to combine mathematical data-driven models with global brain data, thus bridging the gap between microscale, mesoscale, and macroscale. Dynamic Causal Modelling (DCM) and The Virtual Brain (TVB) are two of the most used tools, which have been developed to address the issue. The strength of these frameworks is their versatility since they can exploit the rich global information provided by several non-invasive techniques, such as MRI, EEG, MEG, or PET, in order to emulate brain dynamics either related to task execution or to basal activity.
This Research Topic includes studies aiming to integrate multi-scale experimental results and allowing an in-depth investigation of the structure-function relationships at the basis of global brain dynamics, either in physiological or pathological conditions. The scope extends from studies on humans that investigate whole-brain functions in the context of physiological states, psychiatric and neurological disorders, to translational studies in animals and to computational modeling using “low levels” simulators, such as NEST and NEURON. The potential of these studies is to provide novel information into specific pathological mechanisms, such as brain rewiring and compensatory plasticity.
We welcome authors to focus on the following (but not limited to) topics:
• Characterization of whole-brain functional dynamics using techniques such as MRI, EEG, MEG, both in physiological and pathological conditions
• Characterization of microcircuit functioning using cellular and multicellular recordings, both in physiological and pathological conditions
• Computational modeling of brain dynamics, either concerning global brain activity or the activity of specific circuits
• Application of multi-scale modeling to mesoscale or macroscale experimental data


Keywords: Neuronal microcircuits, brain structure and function, brain modeling, MRI, brain dynamics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

15 May 2021 Abstract
30 September 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

15 May 2021 Abstract
30 September 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..