Research Topic

Resource recovery from wastewater by biological technologies

  • Submission closed.

About this Research Topic

Wastewater process development has gone through at least three major technology generations; centralized collection and disease control (19th century); organics removal (early 20th century), and biological nutrient removal (late 20th century). It is about to enter its fourth generation, which is change to ...

Wastewater process development has gone through at least three major technology generations; centralized collection and disease control (19th century); organics removal (early 20th century), and biological nutrient removal (late 20th century). It is about to enter its fourth generation, which is change to technology which instead of wastefully dissipating or destroying the valuable resources in wastewater, instead recovers energy, organics, and other resources as valuable byproducts. This is being driven not only by a need for reduced cost and resource, particularly energy consumption, but is also motivated by worldwide depletion of non-renewable macronutrients such as phosphorous, and the need to reduce anthropogenic effects on terrestrial nitrogen cycles. A large part of the world nutrient market (50-100% depending on the nutrient) can be recovered from waste streams, with domestic wastewater being a key developmental platform. While many new technologies are contributing to the challenge of resource recovery from wastewater, biological methods offer the strongest promise to efficiently recover valuable resources from dilute streams. Examples include fast growing heterotrophic, chemotrophic, phototrophic, and photosynthetic bacteria, algae, and terrestrial plants for organics recovery, and the use of highly specialized metal reducing and oxidizing organisms for metal recovery. Adsorbent organisms can be used to recover complex organics, while biopolymers such as polyhydroxyalkanoates and alginates can be generated by accumulative bacteria.

This research topic will focus broadly on biological methods to recover resources from domestic and industrial wastewaters and industrial wastes. The next generation of domestic wastewater treatment plants is approaching energy neutrality and complete recovery of nutrients, particularly N and P. But there are increasing drivers to recover valuable products from wastes and wastewaters of different nature, like those coming from the industrial manufacturing and mining extraction. These compounds are characterized by their high stability and almost non-biodegradability. Some resources that are capable of being recovered by biological technologies includes heavy, precious or radioactive metals, and emerging pollutants like pharmacs, enzymes, hormones, fertilizers and bioplastics, among others. Although some efforts have been dedicated to the recovery of these valuable resources, there is still a need for improving the biological options to reclaim and reuse these substances. This research topic is generally structured in the five major areas of (a) recovery of energy, focusing on sustainable production of energy from wastes (b) biomanufacturing from wastes, focusing on recovery of organics and production of bio-products (c) recovery of macro-elements, including fertilizers, (d) recovery of low concentration and trace elements and (e) integration into wastewater based general recovery systems, including integrated resource recovery plants that may consider all four classes of technology. We will focus the call on even balancing between the five key areas above, with a focus on energy, biomanufacturing, and nutrients, but also integrate the issue through two broad review papers that will (a) assess the relative merit of commodity resource recovery vs biomanufacturing, and identify route for resource recovery to contribute to overall sustainability of society, and (b) identify how resource recovery links into next generation and sustainable agriculture and manufacturing.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top