Measurement of event-related potentials (ERPs) in simulated and real environments is advantageous for understanding cognition and behavior during practice of goal-directed activities. Recently, instead of using task-irrelevant “probe stimuli” to elicit ERPs, extraction of ERPs directly from events that occur in simulated and real environments has drawn increased attention. Among the previous ERP studies using immersive virtual reality, only a few cases elicited ERPs from task-related events in dynamic task settings. Furthermore, as far as we surveyed, there were no studies that examined the source of ERPs or correlation between ERPs and behavioral performance in 360-degree immersive virtual reality using head-mounted display. In this study, EEG signals were recorded from 16 participants while they were playing the first-person shooter game with immersive virtual reality environment. Error related negativity (ERN) and correct-(response)-related negativity (CRN) elicited by shooting-related events were successfully extracted. We found the ERN amplitudes to be correlated with the individual shooting performance. Interestingly, the main source of the ERN was the rostral anterior cingulate cortex (ACC), which is different from previous studies where the signal source was often estimated to be the more caudal part of ACC. The obtained results are expected to contribute to the evaluation of cognitive functions and behavioral performance by ERPs in a simulated environment.
Avoidance behavior is a key symptom of most anxiety disorders and a central readout in animal research. However, the quantification of real-life avoidance behavior in humans is typically restricted to clinical populations, who show actual avoidance of phobic objects. In experimental approaches for healthy participants, many avoidance tasks utilize button responses or a joystick navigation on the screen as indicators of avoidance behavior. To allow the ecologically valid assessment of avoidance behavior in healthy participants, we developed a new automated immersive Virtual Reality paradigm, where participants could freely navigate in virtual 3-dimensional, 360-degrees scenes by real naturalistic body movements. A differential fear conditioning procedure was followed by three newly developed behavioral tasks to assess participants’ avoidance behavior of the conditioned stimuli: an approach, a forced-choice, and a search task. They varied in instructions, degrees of freedom, and high or low task-related relevance of the stimuli. We initially examined the tasks in a quasi-experiment (N = 55), with four consecutive runs and various experimental adaptations. Here, although we observed avoidance behavior in all three tasks after additional reinforcement, we only detected fear-conditioned avoidance behavior in the behavioral forced-choice and search tasks. These findings were largely replicated in a confirmatory experiment (N = 72) with randomized group allocation, except that fear-conditioned avoidance behavior was only manifest in the behavioral search task. This supports the notion that the behavioral search task is sensitive to detect avoidance behavior after fear conditioning only, whereas the behavioral approach and forced-choice tasks are still able to detect “strong” avoidance behavior after fear conditioning and additional reinforcement.