Skip to main content

From structural to molecular systems biology: experimental and computational approaches to unravel mechanisms of kinase activity regulation in cancer and neurodegeneration

About this Research Topic

Submission closed.

Regulation of kinase activities plays a critical role in the phase-specific events that characterize cell cycle progression. Multiple signals such as direct or indirect activators and inhibitors influence timing of their expression, therefore, defining precise temporal windows of their regulatory activity. ...

Regulation of kinase activities plays a critical role in the phase-specific events that characterize cell cycle progression. Multiple signals such as direct or indirect activators and inhibitors influence timing of their expression, therefore, defining precise temporal windows of their regulatory activity. This ensures a tight control mechanism which is partially or completely lost during processes of cancer and neurodegeneration. Biochemical, genetic and epidemiologic evidence has been provided over the last years linking a number of genes involved in both tumor development and apoptosis-related diseases. Although tumorigenesis and neurodegeneration are different pathologies, common factors and overlapping molecular pathways have been identified in the generation and progression of these human disorders, often with complementary relationships. Of particular interest is that dysregulation of genes implicated in the control of cell cycle progression is a hallmark of tumorigenesis and the same defects seem to contribute to the degeneration of post-mitotic neurons under apoptotic conditions. Recent evidences suggest that also in budding yeast the apoptotic process is closely related to deregulation of cell cycle events, where inactivation or down-regulation of kinase activities suggest a possible, but still not proved, connection between cell cycle events and apoptosis. Therefore, to study how eukaryotic cell cycle dysregulation leads to tumorogenesis and apoptotic phenotypes observed in neurodegenerative pathologies represents a challenge in Systems Biology, with the aim to elucidate properties or phenotypes that emerge through interactions of molecules in complex biological networks. Multiscale modeling approaches are presented where complementary experimental and computational approaches are employed to investigate structure, function and temporal dynamics of the kinase activities in eukaryotes. A Systems Biology point of view is applied here from budding yeast to mammalian cells, where fundamental processes of cell cycle regulation are highly conserved.

Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

views

total views views downloads topic views

}
 
Top countries
Top referring sites
Loading..

Share on

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.