Assessing bipedal locomotion: towards replicable benchmarks for robotic and robot-assisted locomotion.

Cover image for research topic "Assessing bipedal locomotion: towards replicable benchmarks for robotic and robot-assisted locomotion."
133.8K
views
73
authors
18
articles
Editors
5
Impact
Loading...
7,361 views
29 citations
Graphical User Interface for clinical use. The “Healthy Subjects” section is dedicated to the analysis of healthy subjects and the calculation of the normative muscular activation pattern; the “Patients” section is dedicated to patient data analysis and searching for the best Ekso configuration; in the “Common Tools” section the user can perform an additional analysis of patients or healthy subject's data.
Original Research
19 March 2018

Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context.

5,438 views
40 citations
Original Research
13 February 2018
Comparing Gait with Multiple Physical Asymmetries Using Consolidated Metrics
Tyagi Ramakrishnan
1 more and 
Kyle B. Reed
Comparing variation of mean, standard deviation, and CGAM metric among perturbations. (A) Normal walking without any alterations, (B) walking with SS or the variable stiffness and damping knee orthosis, (C) walking with big leg length and no weight addition at the ankles, and (D) walking with big leg length and weight. SL, step length; ST, step time; GRF, ground reaction forces; PF, push off forces; BF, braking forces; KA, knee angle; AA, ankle angle; HA, hip angle; AM, ankle moment; KM, knee moment, and HM, hip moment.

Physical changes such as leg length discrepancy, the addition of a mass at the distal end of the leg, the use of a prosthetic, and stroke frequently result in an asymmetric gait. This paper presents a metric that can potentially serve as a benchmark to categorize and differentiate between multiple asymmetric bipedal gaits. The combined gait asymmetry metric (CGAM) is based on modified Mahalanobis distances, and it utilizes the asymmetries of gait parameters obtained from motion capture and force data recorded during human walking. The gait parameters that were used in this analysis represent spatio-temporal, kinematic, and kinetic parameters. This form of a consolidated metric will help researchers identify overall gait asymmetry by showing them if the overall gait symmetry is improving and avoid the case where one parameter's symmetry is improving while another is getting worse. The CGAM metric successfully served as a measure for overall symmetry with eleven different gait parameters and successfully showed differences among gait with multiple physical asymmetries. The results showed that mass at the distal end had a larger magnitude on overall gait asymmetry compared to leg length discrepancy. It also showed that the combined effects are varied based on the cancelation effect between gait parameters. The metric was also successful in delineating the differences of prosthetic gait and able-bodied gait at three different walking velocities.

18,913 views
28 citations