Research Topic

Emergent Effects of Noise in Biology: from Gene Expression to Cell Motility

About this Research Topic

Deterministic modeling is extremely useful in many fields in physics. However, in biology, this modeling strategy lacks such degree of generality. As a general rule, whenever one attempts to make a detailed description of a biological system, taking into account the system stochastic behavior is mandatory. The origins of stochasticity are manifold:

1. The environment surrounding the system changes randomly as time progresses, and this directly affects the system state.
2. The system dynamics are inherently stochastic, implying that two identical systems in a constant environment would undergo different fates.
3. A combination of the two previous causes. That is, the environment time evolution is stochastic, and the system response to adapt to the environmental changes are stochastic as well.

Interestingly, the above assertions are valid across many different scales: from intracellular processes to populations of macroscopic individuals. At the cellular level, the stochasticity-originating mechanisms are better understood. In general, these processes involve biochemical reaction networks that are basically driven by ligand-receptor interactions. As the count of molecules participating in these interactions is low in many instances, their stochastic nature becomes apparent, affecting the entire system behavior. Thus, in the middle of several innovative approaches, stochastic modeling has a prominent place in modern cell biology.

This Research Topic aims to be at the frontier of quantitative biology at the intracellular and cellular levels. We look for papers by researchers dealing with stochastic biological systems, and working at the interface between mathematical and computational modeling, on the one hand, and quantitative experimental biology, on the other. We are particularly interested in works that help to understand open questions where stochasticity plays a key role in an emergent biological function or property, at a single or multiple spatial and temporal scales.

The target audience are readers interested in novel advances in:
1. Stochastic modeling methods.
2. Experimental techniques for assessing and characterizing stochasticity at the intracellular and cellular levels.
3. Practical applications to fields like Synthetic Biology.

Contributed papers can be organized around two main general questions:

1. How individual cells process environmental information to perform a given response.

Examples are: gene expression at the single-gene and the gene-network levels, signaling pathways, cell motility, etc.

2. How cells interact among each other and with the environment to achieve a collective behavior.

Examples are: pattern formation, synchronization, collective cell motility, etc.


Keywords: cell biology, stochasticity


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Deterministic modeling is extremely useful in many fields in physics. However, in biology, this modeling strategy lacks such degree of generality. As a general rule, whenever one attempts to make a detailed description of a biological system, taking into account the system stochastic behavior is mandatory. The origins of stochasticity are manifold:

1. The environment surrounding the system changes randomly as time progresses, and this directly affects the system state.
2. The system dynamics are inherently stochastic, implying that two identical systems in a constant environment would undergo different fates.
3. A combination of the two previous causes. That is, the environment time evolution is stochastic, and the system response to adapt to the environmental changes are stochastic as well.

Interestingly, the above assertions are valid across many different scales: from intracellular processes to populations of macroscopic individuals. At the cellular level, the stochasticity-originating mechanisms are better understood. In general, these processes involve biochemical reaction networks that are basically driven by ligand-receptor interactions. As the count of molecules participating in these interactions is low in many instances, their stochastic nature becomes apparent, affecting the entire system behavior. Thus, in the middle of several innovative approaches, stochastic modeling has a prominent place in modern cell biology.

This Research Topic aims to be at the frontier of quantitative biology at the intracellular and cellular levels. We look for papers by researchers dealing with stochastic biological systems, and working at the interface between mathematical and computational modeling, on the one hand, and quantitative experimental biology, on the other. We are particularly interested in works that help to understand open questions where stochasticity plays a key role in an emergent biological function or property, at a single or multiple spatial and temporal scales.

The target audience are readers interested in novel advances in:
1. Stochastic modeling methods.
2. Experimental techniques for assessing and characterizing stochasticity at the intracellular and cellular levels.
3. Practical applications to fields like Synthetic Biology.

Contributed papers can be organized around two main general questions:

1. How individual cells process environmental information to perform a given response.

Examples are: gene expression at the single-gene and the gene-network levels, signaling pathways, cell motility, etc.

2. How cells interact among each other and with the environment to achieve a collective behavior.

Examples are: pattern formation, synchronization, collective cell motility, etc.


Keywords: cell biology, stochasticity


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

01 February 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

01 February 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top