We investigated three areas of uncertainty about the role of vision in basketball shooting, the timing of fixations (early, late), the location of fixations (hoop centre, non-centre) and the effect of the defender on performance. We also sought to overcome a limitation of past quiet eye studies that reported only one quiet eye (QE) period prior to a phase of the action. Elite basketball players received the pass and took three-point shots in undefended and defended conditions. Five sequential QE periods were analyzed that were initiated prior to each phase of the shooting action: QE catch, QE arm preparation, QE arm flexion, QE arm extension, and QE ball release. We used a novel design in which the number of hits and misses were held constant by condition, thus leaving the timing and location of QE fixations free to vary across the phases during an equal number of successful and unsuccessful trials. The number of QE fixations accounted for 87% of total fixations. The greatest percent occurred during QE catch (43.6%), followed by QE arm flexion (34.1%), QE arm extension (17.5%) and QE ball release (4.8%). No fixations were found prior to QE arm preparation, due to a saccade made immediately to the target after QE catch. Fixation frequency averaged 2.20 per trial, and 1.25 during the final shooting action, meaning that most participants had time for only one fixation as the shot was taken. Accuracy was enhanced when: (1) an early QE offset occurred prior to the catch, (2) an early saccade was made to the target, (3) a longer QE duration occurred during arm flexion, and (4) QE arm flexion was located on the centre of the hoop, rather than on non-centre locations. Overall, the results provide evidence that vision of the hoop was severely limited during the last phase of the shooting action (QE ball release). The significance of the results is explored in the discussion, along with a QE training program designed to improve three-point shooting. Overall, the results greatly expand the role of the QE in explaining optimal motor performance.
The role of auditory information on perceptual-motor processes has gained increased interest in sports and psychology research in recent years. Numerous neurobiological and behavioral studies have demonstrated the close interaction between auditory and motor areas of the brain, and the importance of auditory information for movement execution, control, and learning. In applied research, artificially produced acoustic information and real-time auditory information have been implemented in sports and rehabilitation to improve motor performance in athletes, healthy individuals, and patients affected by neurological or movement disorders. However, this research is scattered both across time and scientific disciplines. The aim of this paper is to provide an overview about the interaction between movement and sound and review the current literature regarding the effect of natural movement sounds, movement sonification, and rhythmic auditory information in sports and motor rehabilitation. The focus here is threefold: firstly, we provide an overview of empirical studies using natural movement sounds and movement sonification in sports. Secondly, we review recent clinical and applied studies using rhythmic auditory information and sonification in rehabilitation, addressing in particular studies on Parkinson’s disease and stroke. Thirdly, we summarize current evidence regarding the cognitive mechanisms and neural correlates underlying the processing of auditory information during movement execution and its mental representation. The current state of knowledge here reviewed provides evidence of the feasibility and effectiveness of the application of auditory information to improve movement execution, control, and (re)learning in sports and motor rehabilitation. Findings also corroborate the critical role of auditory information in auditory-motor coupling during motor (re)learning and performance, suggesting that this area of clinical and applied research has a large potential that is yet to be fully explored.