Research Topic

Supramolecular Aspects in Catalysis

About this Research Topic

Supramolecular chemistry investigates and exploits the chemistry of non-covalent weak interactions occurring among molecules. These are the key interactions responsible for all the recognition, transport, and sensing phenomena that are the basis of biological life, and chemists try to reproduce them in model systems. Even enzymes recognize their substrates through binding, but more importantly they bind and stabilize transition states as well as chemical intermediates. The latter recognition phenomena are responsible for the astonishing rate accelerations typical for enzymes.

Molecular recognition is essentially the art of creation of weak intermolecular forces for the construction of structures able to recognize size, shape, functional group distribution, and charge distribution of the target molecule. Target molecules can be charged as well as neutral; however, selective recognition for the latter is more difficult. If the target molecule is in an intermediate state, the host becomes a supramolecular catalyst, reducing the activation energy for the conversion of substrate into product.

This Research Topic aims to showcase cutting-edge research in the field of molecular recognition for catalytic purposes, spanning from phase transfer catalysis reactions to functional nanometric devices for supramolecular catalysis, although it is open to any example of catalysis in which supramolecular interactions play a role--for instance in product or substrate selectivity.


Keywords: Supramolecular chemistry, supramolecular catalysis, molecular recognition, non-covalent interactions, self-assembly


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Supramolecular chemistry investigates and exploits the chemistry of non-covalent weak interactions occurring among molecules. These are the key interactions responsible for all the recognition, transport, and sensing phenomena that are the basis of biological life, and chemists try to reproduce them in model systems. Even enzymes recognize their substrates through binding, but more importantly they bind and stabilize transition states as well as chemical intermediates. The latter recognition phenomena are responsible for the astonishing rate accelerations typical for enzymes.

Molecular recognition is essentially the art of creation of weak intermolecular forces for the construction of structures able to recognize size, shape, functional group distribution, and charge distribution of the target molecule. Target molecules can be charged as well as neutral; however, selective recognition for the latter is more difficult. If the target molecule is in an intermediate state, the host becomes a supramolecular catalyst, reducing the activation energy for the conversion of substrate into product.

This Research Topic aims to showcase cutting-edge research in the field of molecular recognition for catalytic purposes, spanning from phase transfer catalysis reactions to functional nanometric devices for supramolecular catalysis, although it is open to any example of catalysis in which supramolecular interactions play a role--for instance in product or substrate selectivity.


Keywords: Supramolecular chemistry, supramolecular catalysis, molecular recognition, non-covalent interactions, self-assembly


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 December 2017 Abstract
30 June 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 December 2017 Abstract
30 June 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top