Research Topic

Epigenetics/Epitranscriptomics in Brain Development and Neurodevelopmental Disorders

About this Research Topic

The brain is a very complex organ consisting of numerous distinct types of cells. During brain development and cell specification, neural stem cells or progenitor cells gain ample diversity at the level of epigenomics and differentiate into a population of heterogeneous cells. The epigenomic programming of ...

The brain is a very complex organ consisting of numerous distinct types of cells. During brain development and cell specification, neural stem cells or progenitor cells gain ample diversity at the level of epigenomics and differentiate into a population of heterogeneous cells. The epigenomic programming of brain cells involves numerous molecular and cellular processes to direct the changes in DNA methylation, histone and RNA modifications. Pioneer transcription factors may serve as drivers to initiate the cascade of chromatin configuration changes, shifting the expression profiles of downstream genes. Together with epigenetic modifications on DNA and histones, multiple transcription factors may form regulatory modules to control chromatin remodeling and nucleosome positioning, in a cell-type specific manner. Recent advances in brain epi-transcriptome studies reveal the functional relevance of RNA modifications in brain cell specification, as well as the potential links among the epigenetic modifications on DNA, RNA, and histones. Genetic mutations in readers, writers, and erasers of these epigenetic modifications or the aberrations of gene and protein expressions in associated pathways may lead to neurodevelopmental disorders and malfunctioned brain cells. Remarkable progress in omics technology is changing our ability to identify biomarkers associated with the disease phenotypes (e.g. neural/brain disorders and aging progression) and heterogeneous drug responses.

This Research Topic welcomes manuscripts presenting the exciting advances in the field of epigenetics/epi-transcriptomics in brain tissue development, cellular function specification, and neurodevelopmental disorders. Topics of interest include, but are not limited to the following eight sections:

I. Mechanisms in regulation and brain function with regards to histone modifications and DNA methylation, especially of 5-hydroxymethylcytosine (5hmC)

II. Mechanisms in regulation and brain functional roles of RNA methylation including N6-methyladenosine (m6A), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC)

III. Crosstalk among transcription factors and the machinery of histone and DNA modifications during brain development

IV. Blood-based epigenetics research for brain-based disorders

V. Large-scale genetic or epigenetic marker discovery linked to neurodevelopmental disorders for translational and personalized medicine

VI. Bioinformatics tools with novel statistical approaches, machine learning, neural nets or computational procedures/pipelines to provide unique insight in data interpretation for brain single cell analysis, “omics” data integration and mining

VII. Network, pathway, and functional analysis for investigation of dynamic linkages between measured DNA to mRNA and from mRNA to proteins and metabolites, and the influence of the environment on the expression of genes (epigenomics) associated with the disease phenotypes and drug responses (e.g. neural disorder and aging progression such as MS, Parkinson disease, multiple sclerosis, depression, drug additions, aging, mental health etc.)

VIII. Review articles on the latest advances in brain epigenetic mechanisms or recent development of experimental and analytical tools for (RNA)-epigenetic/omics studies with applications to neural/brain disorder and aging progressions.


Keywords: Epigenetics, RNA methylation, Transcription factor, Brain development, Neurodevelopmental disorders


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 May 2019 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 May 2019 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top
);