The question of what explains individual differences in expertise within complex domains such as music, games, sports, science, and medicine is currently a major topic of interest in a diverse range of fields, including psychology, education, and sports science, to name just a few. Ericsson and colleagues’ deliberate practice view is a highly influential perspective in the literature on expertise and expert performance—but is it viable as a testable scientific theory? Here, reviewing more than 25 years of Ericsson and colleagues’ writings, we document critical inconsistencies in the definition of deliberate practice, along with apparent shifts in the standard for evidence concerning deliberate practice. We also consider the impact of these issues on progress in the field of expertise, focusing on the empirical testability and falsifiability of the deliberate practice view. We then discuss a multifactorial perspective on expertise, and how open science practices can accelerate progress in research guided by this perspective.
Self-efficacy is a well-known psychological resource, being positively associated with increased performance. Furthermore, results from field studies suggest a positive impact of self-efficacy on flow experience, which has not yet been tested experimentally. In this study, we manipulated self-efficacy by means of positive feedback and investigated whether self-efficacy serves as a mediator in the relationship between positive feedback and flow and in the relationship between positive feedback and performance. Our sample consisted of 102 participants (63 female, 39 male). The experimental group received positive feedback after completing 5 min of mental arithmetic tasks on a computer, whereas the control group received no feedback. A second session of a mental arithmetic task was then completed for 5 min. Mediation analyses confirmed that specific self-efficacy mediated a positive effect of positive feedback on flow as well as on both performance measures (quality and quantity) in a subsequent task. However, direct effects of feedback on flow and on performance were not significant, which suggests the presence of other mechanisms that remain to be investigated.
The “flow” experience (Csikszentmihalyi, 1975) has been the focus of a large body of empirical work spanning more than four decades. Nevertheless, advancement in understanding – beyond what Csikszentmihalyi uncovered during his initial breakthrough in 1975 – has been modest. In this conceptual analysis, it is argued that progress within the field has been impeded by a lack of consistency in how flow is operationalized, and that this inconsistency in part reflects an underlying confusion regarding what flow is. Flow operationalizations from papers published within the past 5 years are reviewed. Across the 42 reviewed studies, flow was operationalized in 24 distinct ways. Three specific points of inconsistency are then highlighted: (1) inconsistences in operationalizing flow as a continuous versus discrete construct, (2) inconsistencies in operationalizing flow as inherently enjoyable (i.e., “autotelic”) or not, and (3) inconsistencies in operationalizing flow as dependent on versus distinct from the task characteristics proposed to elicit it (i.e., the conditions/antecedents). After tracing the origins of these discrepancies, the author argues that, in the interest of conceptual intelligibility, flow should be conceptualized and operationalized exclusively as a discrete, highly enjoyable, “optimal” state of consciousness, and that this state should be clearly distinguished from the conditions proposed to elicit it. He suggests that more mundane instances of goal-directed engagement are better conceived and operationalized as variations in task involvement rather than variations in flow. Additional ways to achieve greater conceptual and operational consistency within the field are suggested.
The aim of this article is to introduce the concept of Cognitive Fitness (CF), identify its key ingredients underpinning both real-time task performance and career longevity in high-risk occupations, and to canvas a holistic framework for their assessment, training, and augmentation. CF as a capacity to deploy neurocognitive resources, knowledge and skills to meet the demands of operational task performance, is likely to be multi-faceted and differentially malleable. A taxonomy of CF constructs derived from Cognitive Readiness (CR) and Mental fitness (MF) literature maps into phases of operational cycles from foundational to advanced, mission-ready and recovery. Foundational cognitive attributes, such as attention, executive control and co-action, were hypothesized to be trainable at the initial Cognitive Gym phase. More advanced training targets at the CR phase included stress and arousal regulation, adaptability, teamwork, situation awareness (including detection, sense-making and prediction) and decision making (de-biasing and confidence calibration). The mission-ready training phase is focused on tolerances (to sleep loss, monotony, pain, frustration, uncertainty) and resistance (to distraction, deception or manipulation). Operational Augmentation phase relies on support tools such as decision aids and fatigue countermeasures, while the Recovery phase employs reflexive (e.g., mindfulness), and restorative practices (e.g., nutrition and sleep hygiene). The periodization of cognitive training in this cycle is hypothesized to optimize both real-time cognitive performance and the resilience that enables life-long thriving. One of the most promising avenues of validating this hypothesis is by developing an expert consensus on the key CF ingredients and their relative importance in high-performance settings.
Frontiers in Neuroscience
Nanotechnologies in Neuroscience and Neuroengineering