Research Topic

Cognitive Multitasking – Towards Augmented Intelligence

  • Submission closed.

About this Research Topic

The original inspiration of artificial intelligence (AI) was to build autonomous systems that were capable of demonstrating human-like behaviors within certain application areas. However, with the present-day data deluge (made possible by the internet), accompanied by subtle algorithmic enhancements in ...

The original inspiration of artificial intelligence (AI) was to build autonomous systems that were capable of demonstrating human-like behaviors within certain application areas. However, with the present-day data deluge (made possible by the internet), accompanied by subtle algorithmic enhancements in machine learning algorithms (leading to improved pattern recognition), modern AI systems have begun to far exceed humanly achievable performance levels across a variety of domains. Some of the most prominent examples of this reality include IBM Watson winning Jeopardy!, Google DeepMind’s AlphaGo beating the world’s leading Go player, etc. Given the above observations, it is deemed that our vision of what is to come for AI in the future need not be limited to a human imitating perspective. Instead, it may be more beneficial to build AI systems that are able to excel at that which humans have not been evolved to do or to even think about.

In this regard, one of the long-standing goals of AI has been to effectively multitask; i.e., learning to solve many tasks simultaneously. It is worth noting that while humans have not evolved to process multiple distinct situations within short timespans (i.e., in the order of a few seconds) – as interleaving more than one task usually entails a considerable switching cost during which the brain must readjust from one to the other – machines are largely free from any such computational bottlenecks. Thus, not only can machines move more fluidly between tasks, but, when related tasks are bundled together, it may also be possible to seamlessly transfer / share the learned knowledge among them. As a result, while an AI attempts to solve some complex task, several other simpler ones may be unintentionally solved. Moreover, the knowledge learned unintentionally may then be harnessed for intentional use.

With this in mind, the goal of the proposed Research Topic is to further explore the issues faced in cognitive multitasking, placing particular emphasis on computational models, algorithms, as well as new hardware advances that shall enable machines, which are free from any such issues, to be developed as consummate multitask problem-solvers. The topic shall mainly be geared towards computer scientists and computational neuroscientists, with the aim of encouraging research progress in the so far under-explored arena of enhancing the productivity of AI systems via multitasking. Key application areas of interest include the emerging internet of things, that gives rise to multiple streams of data flowing in from different sources at the same time – thereby setting the stage for AI systems that are capable of absorbing all the incoming data, processing it, and making multiple associated decisions in real-time.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..