Research Topic

Biomass-Derived Polymers: Synthesis, Structure, Material Properties and Degradation

About this Research Topic

Polymers obtained from plant biomass have attracted much interest as alternatives to petroleum-derived synthetic polymers. The substitution of petroleum-derived to biomass-derived polymers is recognized as an important target to achieve Sustainable Development Goals (SDGs). A major challenge in achieving ...

Polymers obtained from plant biomass have attracted much interest as alternatives to petroleum-derived synthetic polymers. The substitution of petroleum-derived to biomass-derived polymers is recognized as an important target to achieve Sustainable Development Goals (SDGs). A major challenge in achieving these goals is finding ways to regulate material properties of biomass-derived polymers, specifically polymer structure.

The structural diversity of natural polymers is not fully characterized. In addition, the known structures of polymers and monomers synthesized using biomass-derived material is limited compared to petroleum-derived products. However, recent advances in chemical, biological, and hybrid processes are overcoming these limitations for synthesis of biomass-derived materials. Although conventional biomass-derived polymers are relatively soft and weak, new synthetic methods enable synthesis of bioengineered polymers with high physical strength and thermostability. Even non-biological molecules such as bisphenols are being synthesized via biological process.

At the same time, engineering approaches are allowing regulation of the structure of biosynthesized polymers/oligomers, such as polyesters, polyamides and polysaccharides. Some of these biopolymers are bioactive and potentially useful in food and medical applications. Another important feature of some of the biomass-derived polymers is biodegradability. There is a certain confusion regarding use of the term “biodegradability”, because biodegradability is currently defined as mineralization in compost, but not natural environments. Recently, the significance of biodegradation is becoming apparent as the global plastic pollution and its effect on the environment is recognized. All these factors emphasize the role of biomass-derived polymers, amongst other applications, as a substitute for synthetic polymers.

This Research Topic will highlight recent advances in our understanding of biomass-derived polymers in terms of, but not limited to, their synthesis, metabolic pathways, modifications, processing, as well as polymer structure, material properties, and degradation.


Keywords: biomass, biosynthesis, biodegradable, polymers, synthetic


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

25 October 2019 Manuscript
25 November 2019 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

25 October 2019 Manuscript
25 November 2019 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top