Research Topic

Enhanced Microwave Absorption Properties of Magnetic-Dielectric Composites

  • Submission closed.

About this Research Topic

With the rapid rise of communication technology and electronic equipment, electromagnetic wave (EMW) irradiation and interference poses serious threats to information security and the health of humans and animals. To solve these issues, high-performance EMW absorption materials are urgently needed. ...

With the rapid rise of communication technology and electronic equipment, electromagnetic wave (EMW) irradiation and interference poses serious threats to information security and the health of humans and animals. To solve these issues, high-performance EMW absorption materials are urgently needed. Magnetic-dielectric composites that promote magnetic loss, dielectric loss as well as good impedance match would be promising microwave absorbers.

Integrating magnetic metals, metal oxides, or their composites with carbon materials has been shown to improve their microwave absorption performance. However, there are still some great challenges in integrating metals with carbon materials. For instance, metals, metal oxides, or their composites possess high density and poor chemical corrosive resistance. These disadvantages may limit the practical applications of the metal/carbon composites as microwave absorption materials.
Due to impedance mismatching and limited loss mechanism, magnetic or dielectric materials with one single loss factor cannot display excellent EMW absorption performance. Therefore, through artificially adjusting electromagnetic parameters (complex permittivity and complex permeability), developing dielectric/magnetic composites with strong absorption capacity and broad absorption bandwidth has become a hot area of research within EMW absorbers.

We welcome studies looking at the design of the following materials to increase absorption properties:
• Dielectric loss-based microwave absorption materials, including carbon-based absorbers (amorphous carbon, CNTs, carbon fibers, graphene and others), semiconductors (ZnO, MnO2, Mos2, SiC and others)
• Magnetic loss-based microwave absorption materials, including magnetic metals and alloys, ferrites, etc.
• Polymer-based microwave absorption materials, including polypyrrole, polyamine, PEDOT, conductive polymer composites, etc.
• Various composite consisting of two or more constituents microwave absorption materials. Composites with delicate microstructures to obtain high-efficiency microwave absorption properties are of particular interest.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..