Research Topic

Memristive Neuromorphics: Materials, Devices, Circuits, Architectures, Algorithms and their Co-Design

About this Research Topic

The confluence of Big Data, IoT and Real-Time Analytics calls for rethinking of the hardware computing paradigm, either by the bottom up or top down approach. Memristive neuromorphic systems inspired by brain functions and implemented through new materials properties, bionic memristive devices (e.g., ...

The confluence of Big Data, IoT and Real-Time Analytics calls for rethinking of the hardware computing paradigm, either by the bottom up or top down approach. Memristive neuromorphic systems inspired by brain functions and implemented through new materials properties, bionic memristive devices (e.g., artificial synapses and neurons) and neural network circuits, are emerging with the promise of transforming the semiconductor information processing technology.

Since the experimental discovery of memristors twelve years ago, memristive neuromorphic hardware has continued to make big strides. On the level of the material, a huge number of materials of various categories have shown memristive properties and this number continues to increase rapidly. In such a growing filed, there is a crucial need to establish materials selection rules and evaluate the suitability of the corresponding devices for neuromorphic systems. Device yield testing, performance distribution analysis and circuit reliability simulations have to be performed and standardized to turn these materials research endeavors into real impact. On the device level, researchers have showcased devices with diverse physical mechanisms, primary neuromorphic functions, and intriguing performances. Highly reproducible devices with desired characteristics, and versatile devices integrating multiple neural dynamics and computational capabilities remain to be demonstrated to further boost the system performance and functionality. On the circuit level, many progresses have already been achieved from a few tens of devices-scale to mega-scale, from single-array to multi-array functional circuits benchmarked by executing typical machine learning tasks and basic neural algorithms. Even larger and more compact circuits are necessary for real-world applications. Meanwhile, it is also tempting to consider the memristive circuits not only as the accelerators of machine learning algorithms but also as platforms for unprecedented physical computing which harvest many attractive physical properties of the hardware systems, such as device nonideality, stochasticity and emergent phenomena, many of which can find their neuronal analogues. Communication and co-design across these different levels are also essential to fully unleash the potential of the memristive neuromorphic systems.

Topics of interest include, but are not limited to:
1. Rational design or selection of memristive materials with materials-device-circuit-architecture-algorithm codesign considerations or statistical analysis of the experimental data.
2. Proof-of-concept neuromorphic memristive devices with enhanced bio-fidelity and neuronal computation capabilities.
3. High-yield memristive device technologies, high-performance and highly reliable memristive devices for integrated circuits.
4. Proof-of-concept memristive circuit functionalities that take advantage of the natural properties of the hardware.


Keywords: memristive materials, memristive devices, neuromorphic computing, neural networks, in-memory computing


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

15 January 2021 Manuscript
30 June 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

15 January 2021 Manuscript
30 June 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..