Research Topic

3D Bioprinting of Vascularized Tissues for In Vitro and In Vivo Applications

About this Research Topic

3D bioprinting technology has fostered rapid and exciting developments such as the development of personalized in vitro disease models, high-throughput assays, and improved stem cell transplantation for a range of in vitro and in vivo applications for the tissue engineering and ...

3D bioprinting technology has fostered rapid and exciting developments such as the development of personalized in vitro disease models, high-throughput assays, and improved stem cell transplantation for a range of in vitro and in vivo applications for the tissue engineering and regenerative medicine field. It allows the precise dispense of cell-laden biomaterials and cells for constructing complex and functional living tissues or organs. Compared to traditional fabrication methods, 3D bioprinting offers an unprecedented ability to fabricated sophisticated constructs with precise control over their composition and spatial distribution, producing tissues of high level of biomimicry in architecture and physico-chemical properties. It provides a powerful means to address many challenges in tissue engineering of the in vivo microenvironment, such as vascularization, paracrine factors, and different cell-cell and cell-matrix interactions. However, despite the latest advancements in the field, we are still limited in translating our discoveries from bench to the bedside in a very efficient way.

The aim of the current Research Topic is to highlight the latest developments in the field of biofabrication using 3D bioprinting technology. Deposition of biomaterials (such as, hydrogels or other biomedical polymers) alone or in combination with cells to maintain optimal cell viability and function is limited by several factors before, during and after the bioprinting process. Besides a proper vascular network formation, major challenges in biofabricating tissues that fully mimic the in vivo microenvironment found within our body include:
- mechanical tissue properties;
- tissue maturation;
- stem cell homing;
- extracellular matrix deposition and organization;
- inflammatory response;
- tissue function.

Types of manuscripts to be featured mainly include Original Research and Perspective articles. Review articles that describe the current state-of-the-art in hybrids for specific tissue regeneration (e.g. hybrids for bone regeneration and wound healing) are welcome.
Topics to be investigated in this unique collection may include (but are not limited to):
• 3D bioprinting of fully vascularized tissues;
In vitro disease modeling using vascular cells, stem cells and 3D bioprinting technology;
• Tissue regeneration using 3D bioprinted vascularized constructs;
• Stem cell maturation within 3D bioprinted vascularized tissues;
• 3D bioprinted vascularized high-thoroughput assays
• Vascularized organoid generation using 3D bioprinting technology.


Keywords: 3D bioprinting, Vascularization, 3D cultures, Disease Modelling, Transplantation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

15 December 2020 Manuscript
31 January 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

15 December 2020 Manuscript
31 January 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..