Research Topic

De - Crypting Cryptochromes: Electromagnetic Field Sensors and Clockwork for Quantum Biology and Medicine

About this Research Topic

Cryptochromes are a class of evolutionarily conserved flavoproteins first discovered in plants. They were found to function as blue-light receptors that mediate multiple aspects of plant growth and development and hence have wide-ranging ecological and agricultural significance. Cryptochromes were subsequently identified in organisms throughout all biological Kingdoms, ranging from prokaryotes, such as archaebacteria and blue-green algae, to eukaryotes including algae, fungi, invertebrate and vertebrate animal species. In mammals, they function as central components of the circadian clock and have been linked to medical conditions such as obesity, diabetes, heart disease, inflammation, and the onset of certain cancers.

From a mechanistic perspective, cryptochromes are closely evolutionarily related to photolyases, a class of light-activated DNA repair flavoenzymes which undergo redox reactions. Therefore, all cryptochromes share important structural and biochemical characteristics. Intriguingly, recent developments have suggested that cryptochromes may respond to magnetic fields as well as to light, and that this property has likewise been conserved among cryptochromes from different organisms.

As a consequence, cryptochrome photoreceptors are being studied over a vast array of scientific disciplines ranging from plant, animal, and microbial biology to ecology, evolutionary biology, and medicine. Furthermore, numerous studies in the fields of chemistry, crystallography, biochemistry, biophysics, mathematics, and theoretical physics are probing the underlying mechanisms of how cryptochromes function. Much of this work is however only peripherally accessible to cryptochrome researchers outside of their immediate fields of specialization.

The goal of this Research Topic is therefore to provide reviews of foundational and cutting-edge findings that are accessible to a broad audience. It endeavors to consolidate and stimulate fundamental research as well as provide the groundwork for transformational innovation in biotechnical and therapeutic applications.

Finally, cryptochromes are of increasing interest to the newly emerging field of Quantum Biology. Thus ‘Decrypting’ the cryptochromes might provide an important missing link for understanding how these forces impact on biological systems.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Cryptochromes are a class of evolutionarily conserved flavoproteins first discovered in plants. They were found to function as blue-light receptors that mediate multiple aspects of plant growth and development and hence have wide-ranging ecological and agricultural significance. Cryptochromes were subsequently identified in organisms throughout all biological Kingdoms, ranging from prokaryotes, such as archaebacteria and blue-green algae, to eukaryotes including algae, fungi, invertebrate and vertebrate animal species. In mammals, they function as central components of the circadian clock and have been linked to medical conditions such as obesity, diabetes, heart disease, inflammation, and the onset of certain cancers.

From a mechanistic perspective, cryptochromes are closely evolutionarily related to photolyases, a class of light-activated DNA repair flavoenzymes which undergo redox reactions. Therefore, all cryptochromes share important structural and biochemical characteristics. Intriguingly, recent developments have suggested that cryptochromes may respond to magnetic fields as well as to light, and that this property has likewise been conserved among cryptochromes from different organisms.

As a consequence, cryptochrome photoreceptors are being studied over a vast array of scientific disciplines ranging from plant, animal, and microbial biology to ecology, evolutionary biology, and medicine. Furthermore, numerous studies in the fields of chemistry, crystallography, biochemistry, biophysics, mathematics, and theoretical physics are probing the underlying mechanisms of how cryptochromes function. Much of this work is however only peripherally accessible to cryptochrome researchers outside of their immediate fields of specialization.

The goal of this Research Topic is therefore to provide reviews of foundational and cutting-edge findings that are accessible to a broad audience. It endeavors to consolidate and stimulate fundamental research as well as provide the groundwork for transformational innovation in biotechnical and therapeutic applications.

Finally, cryptochromes are of increasing interest to the newly emerging field of Quantum Biology. Thus ‘Decrypting’ the cryptochromes might provide an important missing link for understanding how these forces impact on biological systems.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

30 April 2021 Abstract
01 September 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

30 April 2021 Abstract
01 September 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..