Research Topic

Bio A.I. - From Embodied Cognition to Enactive Robotics

About this Research Topic

Even before the deep learning revolution, the landscape of artificial intelligence (AI) was already changing drastically in the 90s. Embodied intelligence, it was proposed, must play a crucial role in the design of intelligent machines. This new wave was inspired by what is today known as Embodied and Enactive Cognitive Science or E-Cognition, which considers that cognitive activity does not reduce to the intellectual capacities of agents being able to represent their environments. E-cognition set AI and robotics in a new direction, in which intelligent machines are required to interact with the environment, and where this interaction does not reduce to explicit representations or prespecified algorithms.

These ideas revolutionized the way we think about intelligent machines and cognition, but these theoretical advances are only partially reflected in modern approaches to AI and machine learning (ML). Despite deeply impressive achievements, AI/ML still struggles to recapitulate the kinds of intelligence we find in natural systems, whether we are considering individual insects (e.g. simultaneous localization and mapping), or swarm behaviour (e.g. forum sensing and ensemble inferences), and especially the kinds of flexibility and high-level reasoning characteristic of human cognition.

How can we build embodied intelligent systems capable of adapting to dynamically changing environments with coherent purposes and sensibly prioritized goals, choosing which objectives to pursue based on environmental conditions and particular contexts (cf. frame problem)? That is, how can we ensure that the complexity of intelligent systems mirror the complexity of their environments, potentially without centralized control structures or explicit representations?

Meta-learning may be particularly notable in providing a bridge between more enactivist and traditionally cognitivist perspectives on intelligence. However, while aspects of meta-learning appear to spontaneously emerge from recurrent systems exposed to iterative tasks, useful knowledge-transfer requires substantially overlapping task-structure across epochs. To what extent can richly-structured, non-trivially controllable embodiments provide these overlapping task-demands required for sustainable development of increasingly sophisticated capacities with continual learning?

We invite contributions on the nature of intelligence and its potential recapitulation by artificial systems. Relevant questions include (but are not limited to) the following:
• How can we build embodied intelligent systems that work in a dynamically changing environment?
• What counts as embodiment for AI?
• What kind of embodiments and environmental embeddings are required for what kinds of cognitive capacities (e.g. robust inference, lifelong learning, flexible adaptation, etc.)?
• What are the limits of simulated embodiments and environments, how can these limits be overcome?
• Are there aspects of embodied cognition that can be achieved by other means (e.g. deployment of large-scale computing systems), or are there aspects of intelligence that fundamentally require an enactivist approach?
• In developing advanced AI, what potentialities and limitations might be suggested by an embodied perspective?
• What is required for flexibly adaptive robots that we can deploy in real-world situations, including those involving human beings?


Keywords: Complexity, Dynamical systems, E-Cognition, Embodiment, Enactivism, Control theory, Cybernetics, Cognitivism, Coding, Decoding, Model-based learning, Model-free learning, Meta-learning, Representation, World models, Active inference, Active learning, Robotics, Artificial general intelligence


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Even before the deep learning revolution, the landscape of artificial intelligence (AI) was already changing drastically in the 90s. Embodied intelligence, it was proposed, must play a crucial role in the design of intelligent machines. This new wave was inspired by what is today known as Embodied and Enactive Cognitive Science or E-Cognition, which considers that cognitive activity does not reduce to the intellectual capacities of agents being able to represent their environments. E-cognition set AI and robotics in a new direction, in which intelligent machines are required to interact with the environment, and where this interaction does not reduce to explicit representations or prespecified algorithms.

These ideas revolutionized the way we think about intelligent machines and cognition, but these theoretical advances are only partially reflected in modern approaches to AI and machine learning (ML). Despite deeply impressive achievements, AI/ML still struggles to recapitulate the kinds of intelligence we find in natural systems, whether we are considering individual insects (e.g. simultaneous localization and mapping), or swarm behaviour (e.g. forum sensing and ensemble inferences), and especially the kinds of flexibility and high-level reasoning characteristic of human cognition.

How can we build embodied intelligent systems capable of adapting to dynamically changing environments with coherent purposes and sensibly prioritized goals, choosing which objectives to pursue based on environmental conditions and particular contexts (cf. frame problem)? That is, how can we ensure that the complexity of intelligent systems mirror the complexity of their environments, potentially without centralized control structures or explicit representations?

Meta-learning may be particularly notable in providing a bridge between more enactivist and traditionally cognitivist perspectives on intelligence. However, while aspects of meta-learning appear to spontaneously emerge from recurrent systems exposed to iterative tasks, useful knowledge-transfer requires substantially overlapping task-structure across epochs. To what extent can richly-structured, non-trivially controllable embodiments provide these overlapping task-demands required for sustainable development of increasingly sophisticated capacities with continual learning?

We invite contributions on the nature of intelligence and its potential recapitulation by artificial systems. Relevant questions include (but are not limited to) the following:
• How can we build embodied intelligent systems that work in a dynamically changing environment?
• What counts as embodiment for AI?
• What kind of embodiments and environmental embeddings are required for what kinds of cognitive capacities (e.g. robust inference, lifelong learning, flexible adaptation, etc.)?
• What are the limits of simulated embodiments and environments, how can these limits be overcome?
• Are there aspects of embodied cognition that can be achieved by other means (e.g. deployment of large-scale computing systems), or are there aspects of intelligence that fundamentally require an enactivist approach?
• In developing advanced AI, what potentialities and limitations might be suggested by an embodied perspective?
• What is required for flexibly adaptive robots that we can deploy in real-world situations, including those involving human beings?


Keywords: Complexity, Dynamical systems, E-Cognition, Embodiment, Enactivism, Control theory, Cybernetics, Cognitivism, Coding, Decoding, Model-based learning, Model-free learning, Meta-learning, Representation, World models, Active inference, Active learning, Robotics, Artificial general intelligence


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

01 June 2021 Abstract
01 October 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

01 June 2021 Abstract
01 October 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..