Research Topic

Biological and Functional Restoration of Mechano- and Electro conductive Tissues and Organs: A Regenerative Approach

About this Research Topic

The aim of tissue engineering and regenerative medicine (TERM) is to mimic the architectural and functional nature of the impaired tissues. TERM has made up significantly for the shortage of organs and tissues after severe trauma or terminal illness. Nevertheless, the complete functional and biological ...

The aim of tissue engineering and regenerative medicine (TERM) is to mimic the architectural and functional nature of the impaired tissues. TERM has made up significantly for the shortage of organs and tissues after severe trauma or terminal illness. Nevertheless, the complete functional and biological recovery of tissues and organs is still unrealized due to failure in the restoration of in vitro and in vivo biomimetic scenarios based on tissue engineering. Among various regenerative cues, including chemical, biological, optical, magnetic, and mechanical factors, the implementation of advanced pharmacological approaches and electrical and mechanical stimuli have long been underestimated in regards to their potential for the development and improvement of bioengineered and biological tissues, such as the bone, cartilage, muscle, heart and nerve.

Mechanical and electrical activities manipulate a series of physiological phenomena in the living body and are important for the functionality of mechano- and electro-active tissues, such as bone, cartilage, muscle, brain, spinal cord, peripheral nerve, heart, bone and muscle. Therefore, it is of vital significance and interest to focus on the application of conductive scaffolds and their regulation on endogenous electrical activities in the process of tissue regeneration, with or without exogenous mechanical and electrical stimuli of different paradigms (e.g. intensity, frequency, and wave type). Positive outcomes have been reported in previous literature but it is poorly understood as to how electrical phenomena affect cell physiological function-behavior, metabolism, signaling transduction and gene expression, or how the combination of engineered conductive scaffolds with the specific delivery of therapeutic drugs booster the regenerative capacity of tissues. For instance, the inter-cellular communication between neurons or glial cells influenced by electrically conductive scaffolds is not well elucidated in nerve tissue engineering. Some preliminary findings were obtained from in vitro studies. Long-term evaluation on the reparative potential of mechanically and electrically conductive biomaterials is the key to identifying a translational approach to advance the field of mechano- and electro-active tissue regeneration therapies.

This Research Topic aims to cover the latest advances in the modulation of electrophysiological activities of cells, tissues and organs by conductive biomaterials and their regenerative signaling mechanisms. Sub-topics to be covered include, but are not limited to:

• Physiological and metabolic response of excitable and non-excitable cells and tissues on electrically active substrates under mechanical and electrical stimuli in normal and tissue injury environments
• Modulation of electrical fields under different paradigms on intercellular communication and transcriptional signaling
• Mechanical stimulation for angiogenesis, bone remodeling, cartilage development and function, contraction of cardiomyocytes and skeletal muscle myocytes supported by conductive scaffolds and biodevices (e.g. organ-on-chip technologies)
• Pro-healing effects of mechanically and electrically conductive biomaterials on non-excitable cells and tissues
In vitro and in vivo evaluation of wound healing and tissue regeneration technologies by electrical stimulation generated from other origins, like magnetic forces, laser irradiation, and piezoelectric stimuli (acoustic, ultrasonic or mechanical deformation)
• Application of in vitro or in vivo pharmacological strategies to accelerate or improve the development, maturation and function of bioengineered tissues.
• New biomaterials for mechanobiology/electrobiology and tissue regeneration and interfacial characterization of biomaterials for this type of application.


Keywords: Pharmacological Therapy, Mechanical and Electrical Stimuli, Conductive Materials, Intercellular Communication, Tissue Regeneration


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

27 August 2021 Abstract
25 December 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

27 August 2021 Abstract
25 December 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..