Ocean physical and biogeochemical conditions are rapidly changing over time. Forty years of observations from 1983 to 2023 collected at the Bermuda Atlantic Time-series Study (BATS) site near Bermuda in the North Atlantic Ocean shows continuing trends of surface warming, increase in salinity, loss of dissolved oxygen (DO), increase in carbon dioxide (CO2), and ocean acidification (OA) effects. Over this period, the ocean has warmed by about +1°C, increased in salinity by +0.136, and lost DO by 12.5 µmol kg−1 or ~6%. Since the 1980s, ocean dissolved inorganic carbon (DIC), total alkalinity (TA), a tracer of anthropogenic CO2 (CTrOCA), and fugacities/partial pressures of CO2 (i.e., fCO2 and pCO2) have continued to increase substantially, with no evidence of a reduction in the rates of change over time. Contemporaneously, ocean pH has decreased by ~0.1 pH units [with ocean acidity (i.e., H+) increasing by >30%], and the saturation states of calcium carbonate minerals (Ωcalcite and Ωaragonite) have decreased. These OA indicators show that the chemical conditions for calcification have become less favorable over the past 40 years. Updating of data and trends at the BATS site show how ocean chemistry of the 2020s is now outside the range observed in the 1980s, and how essential these data are for predicting the response of ocean chemistry and marine ecosystems to future shifting earth and ocean conditions.
The Subantarctic Zone, the circumpolar region of the Southern Ocean between the Subtropical and Subantarctic fronts, plays an important role in air-sea CO2 exchange, the storage of anthropogenic CO2, and the ventilation of the lower thermocline. Here we use a time series from moored platforms deployed between 2011 and 2021 as part of the Southern Ocean Time Series (SOTS) observatory to investigate the seasonality and interannual variability of upper ocean hydrography and seawater CO2 partial pressure (pCO2). The region is a net sink for atmospheric CO2 over the nearly 10-year record, with trends revealing that the ocean pCO2 may be increasing slightly faster than the atmosphere, suggesting that oceanic as well as anthropogenic atmospheric forcing contributes to the decadal change, which includes a decline in pH on the order of 0.003 yr−1. The observations also show an amplification of the seasonal cycle in pCO2, potentially linked to changes in mixed layer depth and biological productivity.
Using 25 years of data from the North-East Atlantic Ocean at the ESTOC site, we confirm the surface ocean is actively absorbing carbon emissions caused by human activities and undergoing ocean acidification. The carbon dioxide is also increasing in the subsurface and deepest waters. Seawater salinity normalized inorganic carbon (NCT), fugacity of CO2 (fCO2) and anthropogenic CO2 increase at a rate of 1.17 ± 0.07 µmol kg−1, 2.1 ± 0.1 µatm yr−1 and 1.06 ± 0.11 μmol kg−1 yr−1, respectively, while the ocean pHT fixed to the average temperature of 21°C, declines at a rate of 0.002 ± 0.0001 pH yr−1 in the first 100 m. These rates are 20% higher than values determined for the period 1995–2010. Over the 25 years, the average surface fCO2 increased by 52.5 µatm while the pHT declined by 0.051 pH units (~13% increase in acidity), like the observed seasonal signal. After 2020, seawater conditions are outside the range of surface fCO2 and pHT seasonal amplitude observed in the 1990s. It was also predicted by the year 2040, fCO2 seawater data will be smaller than atmospheric one and the area will be acting as a sink the full year around. Parameterizations of AT, CT, pHT and fCO2 using observations of water temperature, salinity and dissolved oxygen were determined for the ESTOC site with standard error of estimation of 6.5 µmol kg−1, 6.8 µmol kg−1, 0.010 pH and 9.6 µatm, respectively, and were applied to the North-East Atlantic Ocean. The observations and the parameterizations showed that the trends of the carbonate variables along the water column in the eastern subtropical ESTOC region are dominated by anthropogenically induced changes, observed in the whole water profile.