What role does speaker population size play in shaping rates of language evolution? There has been little consensus on the expected relationship between rates and patterns of language change and speaker population size, with some predicting faster rates of change in smaller populations, and others expecting greater change in larger populations. The growth of comparative databases has allowed population size effects to be investigated across a wide range of language groups, with mixed results. One recent study of a group of Polynesian languages revealed greater rates of word gain in larger populations and greater rates of word loss in smaller populations. However, that test was restricted to 20 closely related languages from small Oceanic islands. Here, we test if this pattern is a general feature of language evolution across a larger and more diverse sample of languages from both continental and island populations. We analyzed comparative language data for 153 pairs of closely-related sister languages from three of the world's largest language families: Austronesian, Indo-European, and Niger-Congo. We find some evidence that rates of word loss are significantly greater in smaller languages for the Indo-European comparisons, but we find no significant patterns in the other two language families. These results suggest either that the influence of population size on rates and patterns of language evolution is not universal, or that it is sufficiently weak that it may be overwhelmed by other influences in some cases. Further investigation, for a greater number of language comparisons and a wider range of language features, may determine which of these explanations holds true.
This study offers evidence for an environmental effect on languages while relying on continuous linguistic and continuous ecological variables. Evidence is presented for a positive association between the typical ambient humidity of a language’s native locale and that language’s degree of reliance on vowels. The vowel-usage rates of over 4000 language varieties were obtained, and several methods were employed to test whether these usage rates are associated with ambient humidity. The results of these methods are generally consistent with the notion that reduced ambient humidity eventually yields a reduced reliance of languages on vowels, when compared to consonants. The analysis controls simultaneously for linguistic phylogeny and contact between languages. The results dovetail with previous work, based on binned data, suggesting that consonantal phonemes are more common in some ecologies. In addition to being based on continuous data and a larger data sample, however, these findings are tied to experimental research suggesting that dry air affects the behavior of the larynx by yielding increased phonatory effort. The results of this study are also consistent with previous work suggesting an interaction of aridity and tonality. The data presented here suggest that languages may evolve, like the communication systems of other species, in ways that are influenced subtly by ecological factors. It is stressed that more work is required, however, to explore this association and to establish a causal relationship between ambient air characteristics and the development of languages.