Research Topic

Understanding the Whisper of Headwaters

About this Research Topic

Urbanization, industrialization, and agriculture have fundamentally altered lateral fluxes of carbon and nutrients in the last 150 years, causing eutrophication, toxic cyanobacteria blooms, and expansive hypoxic dead zones that erode the capacity of ecosystems to feed and water human societies. Over the past 50 years, global fertilizer application has increased 5-fold, and anthropogenic pressures on aquatic ecosystems are expected to further intensify through the middle of the century due to population growth and increasing meat consumption. Therefore, understanding how water and solutes enter and propagate through freshwater landscapes in the Anthropocene is critical to protecting and restoring aquatic ecosystems and ensuring human water security.

Substantial investment has been made to reduce carbon and nutrient pollution at local, national, and international levels, but results remain mixed in part because of difficulty monitoring and predicting water quality in dynamic freshwater landscapes. Indeed, current water quality monitoring schemes are a consequence of historical priorities and choices, and most regulatory frameworks impose limits on annual fluxes or mean concentrations in medium to large rivers. This is an appealing strategy because water quality in larger rivers integrates many small catchments, and from an estuarine or oceanic perspective, total nutrient flux is the main metric of concern. Yet, monitoring large rivers may not provide information either on how to reduce these nutrients loads from source areas (most of which are low-order headwater catchments), nor on whether current regulations are being met. Indeed, there is growing evidence that to reduce downstream nutrient fluxes, we need to consider conditions far upstream in headwater catchments, which represent the vast majority of stream length and basin area. Many monitoring designs are not able to provide information on relationships between landscape structure, land use, and water quality, nor on the time lags in the response of water quality after land use change. Therefore, they are unlikely to usefully inform management efforts to improve water quality.
Because headwater catchments are extremely numerous and highly variable, both spatially distributed and temporally intensive monitoring and simulation are needed to understand the production, processing, and propagation of water, solutes, and particulates through freshwater landscapes.

This Research Topic brings together applied and fundamental research addressing this headwater conundrum. It invites interdisciplinary observations and analyses that address the following question: given the high cost of high-frequency water quality monitoring, how can we meaningfully quantify ecohydrological heterogeneity in freshwater networks to generate new ecological understanding and improve monitoring and management? Contributions are particularly welcome that explicitly address scaling predictions and implementing effective interventions in dynamic ecological mosaics.


Keywords: Headwater catchment, water quality, landscape, hydrology, stream


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Urbanization, industrialization, and agriculture have fundamentally altered lateral fluxes of carbon and nutrients in the last 150 years, causing eutrophication, toxic cyanobacteria blooms, and expansive hypoxic dead zones that erode the capacity of ecosystems to feed and water human societies. Over the past 50 years, global fertilizer application has increased 5-fold, and anthropogenic pressures on aquatic ecosystems are expected to further intensify through the middle of the century due to population growth and increasing meat consumption. Therefore, understanding how water and solutes enter and propagate through freshwater landscapes in the Anthropocene is critical to protecting and restoring aquatic ecosystems and ensuring human water security.

Substantial investment has been made to reduce carbon and nutrient pollution at local, national, and international levels, but results remain mixed in part because of difficulty monitoring and predicting water quality in dynamic freshwater landscapes. Indeed, current water quality monitoring schemes are a consequence of historical priorities and choices, and most regulatory frameworks impose limits on annual fluxes or mean concentrations in medium to large rivers. This is an appealing strategy because water quality in larger rivers integrates many small catchments, and from an estuarine or oceanic perspective, total nutrient flux is the main metric of concern. Yet, monitoring large rivers may not provide information either on how to reduce these nutrients loads from source areas (most of which are low-order headwater catchments), nor on whether current regulations are being met. Indeed, there is growing evidence that to reduce downstream nutrient fluxes, we need to consider conditions far upstream in headwater catchments, which represent the vast majority of stream length and basin area. Many monitoring designs are not able to provide information on relationships between landscape structure, land use, and water quality, nor on the time lags in the response of water quality after land use change. Therefore, they are unlikely to usefully inform management efforts to improve water quality.
Because headwater catchments are extremely numerous and highly variable, both spatially distributed and temporally intensive monitoring and simulation are needed to understand the production, processing, and propagation of water, solutes, and particulates through freshwater landscapes.

This Research Topic brings together applied and fundamental research addressing this headwater conundrum. It invites interdisciplinary observations and analyses that address the following question: given the high cost of high-frequency water quality monitoring, how can we meaningfully quantify ecohydrological heterogeneity in freshwater networks to generate new ecological understanding and improve monitoring and management? Contributions are particularly welcome that explicitly address scaling predictions and implementing effective interventions in dynamic ecological mosaics.


Keywords: Headwater catchment, water quality, landscape, hydrology, stream


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 January 2018 Abstract
31 July 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 January 2018 Abstract
31 July 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top