About this Research Topic
Microbial and non-microbial plant biostimulants are usually used for open field and greenhouse crops. The biostimulants market is increasing year by year; with the market of biostimulant, active ingredients (amino acids, seaweed extracts, humic substances, and selected microorganisms or their metabolites) is estimated to account for 2.6 billion dollars in 2019 and is projected to reach almost $US 5 billion by 2025. Moreover, in the last 10 years (2010-2020) more than 1,000 scientific papers on ‘plant biostimulants’ were published and a bigger number of articles are available on the Scopus database using related words/terms (i.e., humic substances, seaweed extracts, microalgae, silicon, AMF or PGPR and microbial metabolites). Despite the huge scientific and commercial interest in microbial and non-microbial plant biostimulants, the detailed molecular, cellular, and physiological mechanisms underlying plant-biostimulant interactions under different environments and management strategies remain largely unknown. Therefore, there is an urgent need among the scientific community and commercial enterprises to better elucidate the causal/functional mechanisms of biostimulants, their potential side-effects on the environment, and their effect on the incidence or prevalence of plant or human pathogens. The elucidation of mechanisms from plant biostimulants will permit the development of a second generation of biostimulants where synergistic and complementary mechanisms can be functionally designed.
This Research Topic welcome Original Research, Review*, Policy and Practice Reviews, Methods, Opinion and Perspectives dissecting the agricultural functions and action mechanisms of plant biostimulants under optimal and adverse environmental situations (e.g., salinity, drought, thermal stress, suboptimal pH values, heavy metals, nutrient stress) or in optimum growing conditions. This compilation of hypothesis-driven studies on the physiological mechanisms of plant biostimulants will foster discussions within this new field, promote collaborations, and provide important information needed for downstream translational research, including designing and formulating biostimulants.
*Please note: If you intend to submit a Review Article you are highly encouraged to submit an abstract, highlighting the area of focus, and a suggested table of contents.
Please note: descriptive studies that report responses of growth, yield, or quality to biostimulant treatments will not be considered if they do not progress physiological understanding of these responses.
Keywords: humic substances, protein hydrolysates, silicon, arbuscular mycorrhiza, plant growth promoting rhizobacteria, macroalgae, microalgae, abiotic stresses, nutrient use efficiency, physiological mechanisms, plant-microbiome
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.