Research Topic

Applications of Statistical Methods and Machine Learning in the Space Sciences

About this Research Topic

Statistical methods have been part of scientific data analysis in the space sciences for decades and machine learning (ML) is becoming an inevitable tool in the analysis of huge volumes of spacecraft data. Data science (DS) and ML are revolutionizing the way scientific problems in the space sciences are conceptualized and addressed, and have shown to be greatly successful in modeling and data analysis. In the wake of the immense volume of data acquired by the numerous spacecraft missions, methods such as time series analysis, segmentation, Bayesian methods, probabilistic inference and surrogate models, to mention a few, are critical for future scientific findings and discoveries. Though ML and deep neural networks are powerful tools for data mining and pattern recognition, and to make predictions, the interpretability and explainability of the models built on these techniques have not been explored adequately until recently.

Since statistical methods form an integral part of ML techniques, a review of these methods as applied to space sciences is timely and a virtual conference, "Applications of Statistical Methods and Machine Learning in the Space Sciences", was held during 17-21 May 2021 (http://spacescience.org/workshops/mlconference2021.php) that brought together experts in academia and industry to leverage the advancements in statistics, data science, methods of artificial intelligence (AI such as machine learning and deep learning, and information theory to improve the analytic models and their predictive capabilities making use of the enormous data in the field of space sciences. The multidisciplinary conference welcomed students and researchers from all disciplines of space science (solar physics and aeronomy, planetary sciences, geology, exoplanet and astrobiology, galaxies), from the fields of AI, statistics and data science, and from industry who implement methods of advanced statistics and AI in their research. In addition to keynote lectures and contributed talks/posters, there were discussion sessions designated to handle different topics on each each day with emphasis on the interpretability and explainability of the ML models.

The proposed research topic will be a collection of works presented at this virtual conference and and new contributions from the broader scientific community in the form of original research articles, reviews/mini-reviews, brief reports and commentaries on the present scenario, and scope of statistical methods and ML in the various fields of space sciences such as solar and heliospheric studies, planetary sciences and exoplanets, astrophysics, space weather research and operations, and atmospheric and magnetospheric sciences. We encourage contributions from a wide range of topics including but not limited to: advanced statistical methods, deep learning and neural networks, times series analysis, Bayesian methods, feature identification and feature extraction, physics-based models combined with machine learning techniques and surrogate models, space weather prediction and other domain topics in space sciences where statistical methods and AI are applied, model validation and uncertainty quantification, turbulence and non-linear dynamics in space plasma, physics informed neural networks, information theory and data reconstruction and data assimilation.


Keywords: machine learning, deep learning, space weather, atmospheric sciences, astrophysics, exoplanets, Bayesian approach, big data, surrogate models


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Statistical methods have been part of scientific data analysis in the space sciences for decades and machine learning (ML) is becoming an inevitable tool in the analysis of huge volumes of spacecraft data. Data science (DS) and ML are revolutionizing the way scientific problems in the space sciences are conceptualized and addressed, and have shown to be greatly successful in modeling and data analysis. In the wake of the immense volume of data acquired by the numerous spacecraft missions, methods such as time series analysis, segmentation, Bayesian methods, probabilistic inference and surrogate models, to mention a few, are critical for future scientific findings and discoveries. Though ML and deep neural networks are powerful tools for data mining and pattern recognition, and to make predictions, the interpretability and explainability of the models built on these techniques have not been explored adequately until recently.

Since statistical methods form an integral part of ML techniques, a review of these methods as applied to space sciences is timely and a virtual conference, "Applications of Statistical Methods and Machine Learning in the Space Sciences", was held during 17-21 May 2021 (http://spacescience.org/workshops/mlconference2021.php) that brought together experts in academia and industry to leverage the advancements in statistics, data science, methods of artificial intelligence (AI such as machine learning and deep learning, and information theory to improve the analytic models and their predictive capabilities making use of the enormous data in the field of space sciences. The multidisciplinary conference welcomed students and researchers from all disciplines of space science (solar physics and aeronomy, planetary sciences, geology, exoplanet and astrobiology, galaxies), from the fields of AI, statistics and data science, and from industry who implement methods of advanced statistics and AI in their research. In addition to keynote lectures and contributed talks/posters, there were discussion sessions designated to handle different topics on each each day with emphasis on the interpretability and explainability of the ML models.

The proposed research topic will be a collection of works presented at this virtual conference and and new contributions from the broader scientific community in the form of original research articles, reviews/mini-reviews, brief reports and commentaries on the present scenario, and scope of statistical methods and ML in the various fields of space sciences such as solar and heliospheric studies, planetary sciences and exoplanets, astrophysics, space weather research and operations, and atmospheric and magnetospheric sciences. We encourage contributions from a wide range of topics including but not limited to: advanced statistical methods, deep learning and neural networks, times series analysis, Bayesian methods, feature identification and feature extraction, physics-based models combined with machine learning techniques and surrogate models, space weather prediction and other domain topics in space sciences where statistical methods and AI are applied, model validation and uncertainty quantification, turbulence and non-linear dynamics in space plasma, physics informed neural networks, information theory and data reconstruction and data assimilation.


Keywords: machine learning, deep learning, space weather, atmospheric sciences, astrophysics, exoplanets, Bayesian approach, big data, surrogate models


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

01 October 2021 Abstract
17 December 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

01 October 2021 Abstract
17 December 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..