Skip to main content

About this Research Topic

Submission closed.

The process of Epithelial-Mesenchymal-Transition (EMT) is known to result in a phenotype change in cells from a proliferative state to a more invasive state. EMT has been reported to drive the metastatic spread of various cancers and has also been associated with drug resistance to cytotoxics and targeted ...

The process of Epithelial-Mesenchymal-Transition (EMT) is known to result in a phenotype change in cells from a proliferative state to a more invasive state. EMT has been reported to drive the metastatic spread of various cancers and has also been associated with drug resistance to cytotoxics and targeted therapeutics. Recently phenotype switching akin to EMT has been reported in non-epithelial cancers such as metastatic melanoma. This process involves changes in EMT-Transcription Factors (EMT-TFs), suggesting that phenotype-switching may be common to several tumour types.

It remains unclear as to whether the presence of both Epilthelial-like and Mesenchymal-like cells are a pre-requisite for phenotype switching within a tumour, how this heterogeneity is regulated, and if alteration of cell phenotype is sufficient to mediate migratory changes, or whether drivers of cell migration result in an associated phenotype switch in cancer cells. Similarly it has yet to be clarified if cells in an altered phenotype can be refractory to drug therapy or whether mediators of drug resistance induce a concurrent phenotypic change. Little is known today about the underlying genetic, epigenetic and transient changes that accompany this phenotypic switch and about the role for the tumor micro-environment in influencing it. Hence this is currently an area of speculation and keen interest in the Oncology field with wide-ranging translational implications.

In this Frontiers Research Topic, we will discuss our current understanding of these concepts in various cancer types including breast cancer, colorectal cancer, lung cancer and metastatic melanoma. This topic will cover how these processes of cellular and phenotypic plasticity are regulated and how they relate to cancer initiation, progression, dormancy, metastases and response to cytotoxics or targeted therapies.

Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

total views

total views article views downloads topic views

}
 
Top countries
Top referring sites
Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.