A phase field model to study dynamics of microstructure transformations and the evolution of defect structure during heat treatment of Fe-Cr-Al systems is developed. Statistical and kinetic properties of evolving microstructure and defect structure in alloys with different content of alloying elements and at different temperatures were studied. Point defects rearrangement during precipitation is discussed in details. Universality of statistical distributions over precipitate size is revealed for considered class of alloys.
U3Si2 is a potential accident-tolerant fuel (ATF) due to its high thermal conductivity and uranium density relative to UO2. The grain size and distribution play an essential role in the service performance of U3Si2. However, the grain evolution is quite complicated and remains unclear, which limits further application of U3Si2 in the ATF assembly. In the present work, a phase-field model is employed to investigate the nucleation and growth of grains in U3Si2. Our results show that the number of grains rises rapidly at the nucleation stage until they occupy the whole system. After that, the grain radius and area continue to grow, and the grain number decays. The grain area increases in time according to the linear law, while the mean grain radius increases with time in a power law form with the scaling growth exponent z = 0.42, which is quite close to the theoretically predicted value. Finally, we performed statistical analysis and found that the grain size evolution of U3Si2 obeys Rayleigh distribution. Our simulation not only elucidates the nucleation and evolution of grains in U3Si2 during the thermal treatment process unambiguously but also provides a fundamental study on the investigation of grain growth, subdivision, and even amorphization in the irradiated condition, which is very important for U3Si2 used as ATF in the light water reactor.
A parallel Jacobian-Free Newton Krylov discrete ordinates method (comePSn_JFNK) is proposed to solve the multi-dimensional multi-group pin-by-pin neutron transport models, which makes full use of the good efficiency and parallel performance of the JFNK framework and the high accuracy of the Sn method for the large-scale models. In this paper, the k-eigenvalue and the scalar fluxes (rather than the angular fluxes) are chosen as the global solution variables of the parallel JFNK method, and the corresponding residual functions are evaluated by the Koch–Baker–Alcouffe (KBA) algorithm with the spatial domain decomposition in the parallel Sn framework. Unlike the original Sn iterative strategy, only a “flattened” power iterative process which includes a single outer iteration without nested inner iterations is required for the JFNK strategy. Finally, the comePSn_JFNK code is developed in C++ language and, the numerical solutions of the 2-D/3-D KAIST-3A benchmark problems and the 2-D/3-D full-core MOX/UOX pin-by-pin models with different control rod distribution show that comePSn_JFNK method can obtain significant efficiency advantage compared with the original power iteration method (comePSn) for the parallel simulation of the large-scale complicated pin-by-pin models.
The advanced reactor design needs an accurate cross-section generation code. In this study, a new nuclear data processing code AXSP is developed, and the method and performance of which are described. Compared with the NJOY program, the precision of the unresolved resonance processing module UnresXS has been significantly improved due to the adoption of a more accurate solution method and the consideration of in-sequence overlap integrals. The time consumption of PUnresXS has been decreased significantly due to an optimized sorting algorithm. At the same time, other modules of AXSP are relatively comprehensive. The function of resolved resonance cross-section reconstruction and linearization is the ReconXS module. The Doppler broadening module is BroadXS by using Gauss–Hermite quadrature and Gauss–Legendre quadrature from 0 K temperature pointwise cross section to any temperature which is defined by the user. The shielding factor in the unresolved resonance energy region is calculated by the UnresXS or the PUnresXS module, which are developed based on the Bondarenko method and the probability table method, respectively. The ACE formatted cross sections for the Monte Carlo code is processed by the ACEXS module, and the multigroup cross sections are generated by the GroupXS module. The cross sections processed by different modules were verified by the NJOY2016 code, and the multigroup cross sections were also verified by using the critical benchmarks. The multiplication factor difference between AXSP and NJOY2016 is less than 20 pcm. In addition to this, the ZPR6/7 fast reactor is used for ACE format library verification. The results show that the criticality calculated by AXSP has a good agreement with that of NJOY2016.
Frontiers in Energy Research
Materials and Salt Chemistry for Molten Salt Reactors