Chemical communication is a fundamental, highly complex component of social insect societies. Ants in particular employ a remarkable diversity of chemical signals to maintain social cohesion among nestmates, gain essential resources through coordinated foraging, and warn of danger. Although the chemicals used can be functionally specific, they are vulnerable to exploitation by eavesdropping natural enemies (e.g., parasitoids, predators, parasites) and other associates (e.g., myrmecophiles). Ant nests are nutrient hotspots due to their collection of resources warranting keen defense systems; yet the heavily defended hideouts are frequently invaded. Many organisms exploit ant species, but how they locate hosts—including what host-derived cues are used—is still poorly understood. Here, we review current knowledge about how ant chemical communication systems can be exploited by unintended receivers. We take a case study approach and illustrate the diversity of ant associates and host traits that may predispose ants to exploitation. We identify knowledge gaps by reviewing host systems and listing: (1) the types of associates (e.g., fly, wasp, beetle) where eavesdropping is likely occurring, organized by the host communication system that is being exploited; (2) the ant parasites that exploit trail pheromones; and (3) the experimentally determined chemicals (i.e., alarm/defensive pheromones), used by eavesdroppers. At least 25 families of arthropods (10 orders) potentially eavesdrop on ant communication systems and nearly 20 host ant species are vulnerable to trail parasite ant species. We also propose future research that will improve our understanding of community assembly by examining host traits (e.g., latitude, nest characteristics, trail system) that influence their susceptibility to eavesdropping associates.
Any sensory strategies that prey take to avoid eavesdropping predators will depend on the behavioral decisions of eavesdroppers. As these decisions are guided by the sensory processing of communication signals, accurate measurements of sensorimotor output will provide insights into signal preferences, parameters evaluated for signal recognition, and the perceptual and cognitive capacity of receivers. A number of techniques have been proposed for measuring walking phonotaxis (and taxis behavior more generally). Consistent limitations of such measures are (1) that some animals cannot discriminate alternative signals when they occur simultaneously (i.e., overlapping in the spectral and temporal domain), or (2) some animals respond with low selectivity to stimuli presented in isolation, and (3) identifying appropriate dimensions of response variability is not straightforward. Here we document an approach to develop a sensitive phonotaxis performance index to quantify pulse rate selectivity in two distinct populations of the acoustic parasitoid fly Ormia ochracea. Using a spherical treadmill to measure tethered walking phonotaxis, we examined the ability of flies to track a switch in the broadcast location of test songs with varying pulse-rates. By applying an information-theoretic approach, we identified a set of response parameters that best predict a previously described pulse-rate preference. These parameters were incorporated into an index to describe temporal pattern selectivity during walking phonotaxis. Our study also revealed that in Floridian Ormia ochracea, the pulse rate preference function is not affected by the locomotor mode (walking vs. flying) used in phonotaxis. Furthermore, we describe for the first time, pulse rate selectivity in Californian Ormia ochracea. Both populations have pulse rate preference functions with peak selectivity between 50 and 60 Pulses/s (pps). Previous studies demonstrating natural differences in host song preferences (Floridian O. ochracea preferring Gryllus rubens and Californian O. ochracea preferring Gryllus lineaticeps calling songs) may be based on other temporal parameters aside from pulse rate. Finally, we discuss the advantages and limitations of our approach in quantifying signal selectivity. This approach can be applied broadly to study signal preferences in other acoustic parasitoid flies and potentially other eavesdroppers that exhibit taxis behaviors in response to the communication signals of prey.
Due to human perceptional bias in favor of air-borne sounds, substrate-borne vibrational signaling has been traditionally regarded as a highly specialized, inherently short-range and, consequently, a private communication channel, free from eavesdropping by sexual competitors and predators. In this review, we synthesize current knowledge pertinent to the view that most animals live in a rich vibratory world, where vibrational information is available to unintended receivers. In recent years, we realized that vibrational signaling is one of the oldest and taxonomically most widespread forms of communication by mechanical waves and that receptors detecting substrate vibrations are ubiquitous. In nature, substrate vibrations are reliable source of information readily available to all members of the animal community able to detect them. Viewing vibrational communication in more relevant ecological context reveals that animals relying on substrate vibrations live in complex communication networks. Long evolutionary history of this communication channel is reflected in varied and sophisticated predator-prey interactions guided by substrate-borne vibrations. Eavesdropping and exploitation of vibrational signals used in sexual communication have been so far largely neglected; however, existing studies show that generalist arthropod predators can intercept such signals emitted by insects to obtain information about prey availability and use that information when making foraging decisions. Moreover, males which advertise themselves for longer periods than females and with vibrational signals of higher amplitude face higher predation risk. It is likely that eavesdropping and exploitation of vibrational signals are major drivers in the evolution taking place in the vibratory world and we believe that studies of interspecific interactions guided by substrate vibrations will, in the future, offer numerous opportunities to unravel mechanisms that are central to understanding behavior in general.
The field of predator eavesdropping concentrates on the detection by a predator or parasite of signals that prey direct at conspecifics, and the subsequent evolution by prey to avoid or lessen such detection. Here, we first point out that signaling prey species are often found in mixed-species moving groups or stationary aggregations, and ask the question of how simultaneous signaling, by members of one species or more, might affect predator eavesdropping behavior and the composition of the groups themselves. The detection risk of prey species will be affected by the other species they associate with, and prey should generally avoid joining a group with more detectable species. Yet prey may select to join other species that are preferred by predators, diluting their own risk of attack, as long as that does not lead to substantially greater detection and thereby increased predation. We next review the evidence that prey grouping and collective responses when attacked can confuse predators, leading to lower capture rates. Evidence for this confusion effect mostly involves visually orienting predators. We then ask if a similar phenomenon could occur when animals in a group simultaneously produce acoustic signals and find relevant evidence for predator confusion under such situations in the literature associated with the “cocktail party effect.” As confusion is heightened by similarities among mixed-species group members, this provides a force at ecological or evolutionary timescales to make species that associate in groups, and their signals, more similar to each other. However, heterogeneous mixed-species groups may be favored if species are differentially preferred as prey. We suggest experiments to examine whether the success rates of acoustically orienting predators depend on the group size of their mixed-species prey. More observations on the relative positions of conspecifics and heterospecifics in space, and the temporal association of their signals, will also increase our understanding of the relationship between mixed-species grouping and predator eavesdropping.