The characterization of particle and plankton populations, as well as microscale biophysical interactions, is critical to several important research areas in oceanography and limnology. A growing number of aquatic researchers are turning to holography as a tool of choice to quantify particle fields in diverse environments, including but not limited to, studies on particle orientation, thin layers, phytoplankton blooms, and zooplankton distributions and behavior. Holography provides a non-intrusive, free-stream approach to imaging and characterizing aquatic particles, organisms, and behavior in situ at high resolution through a 3-D sampling volume. Compared to other imaging techniques, e.g., flow cytometry, much larger volumes of water can be processed over the same duration, resolving particle sizes ranging from a few microns to a few centimeters. Modern holographic imaging systems are compact enough to be deployed through various modes, including profiling/towed platforms, buoys, gliders, long-term observatories, or benthic landers. Limitations of the technique include the data-intensive hologram acquisition process, computationally expensive image reconstruction, and coherent noise associated with the holograms that can make post-processing challenging. However, continued processing refinements, rapid advancements in computing power, and development of powerful machine learning algorithms for particle/organism classification are paving the way for holography to be used ubiquitously across different disciplines in the aquatic sciences. This review aims to provide a comprehensive overview of holography in the context of aquatic studies, including historical developments, prior research applications, as well as advantages and limitations of the technique. Ongoing technological developments that can facilitate larger employment of this technique toward in situ measurements in the future, as well as potential applications in emerging research areas in the aquatic sciences are also discussed.
This study shows that the use of a submersible digital holographic camera as part of a multifunctional hardware and software complex allows carrying out in situ measurements of plankton, automating the process of obtaining data on plankton, as well as classifying plankton species up to an order within the specified taxonomic groups. Such automation ensures monitoring expeditionary or stationary research of species diversity and spatial and temporal organization of zooplankton in conjunction with the hydrophysical parameters of the medium. This paper presents the full-scale results of vertical profiles and daily measurements of plankton made with the use of the submersible digital holographic camera as well as the classification of plankton in laboratory and field conditions in the automatic mode. It is shown that, within the accomplished version, the classification algorithm using the morphological parameter makes it possible to solve the problem quickly (the time required to obtain the result is less than 1 s and depends on the number of plankton particles and the frame size of a restored image); however, the classification accuracy by orders varies within 50–60%.
Rushikulya Estuary is rich in biodiversity facing significant changes in recent periods due to pollution/anthropogenic impacts from the industries and growing urbanization along the banks of the river. This estuary caters mass nesting of Olive Ridley sea turtles and one of the world’s largest rookery in India. In view of the above, the present study examined the seasonal variability of water quality parameters [water temperature, pH, salinity, dissolved oxygen (DO), total suspended matter (TSM), inorganic nutrients (NO2-N, NO3-N, NH4-N, PO4-P, and SiO4-Si), and the phytopigment, i.e., Chlorophyll-a (chl-a)] from the seawater samples of three different seasons pre-monsoon, monsoon, and post-monsoon. Time series observations were made at five locations off Rushikulya Estuary, Bay of Bengal, from March 2011 to February 2013. A wide range of nutrient concentrations except for NO2-N, varied from 0.89–3.62 μmol/l in the NO3-N, from 1.36–6.81 μmol/l in the NH4-N, from 0.66–3.45 μmol/l in the PO4-P and from 0.89–7.97 μmol/l in the SiO4-Si. The highest chl-a (3.72 mg/m3) was recorded during pre-monsoon than monsoon and post-monsoon. Factor analysis (FA) showed that three underlying factors, each during pre-monsoon, monsoon, and post-monsoon, influenced the water quality to the extent of 75.02, 67.33, and 66.37%, respectively. The significant result from a statistical view of non-metric multidimensional scaling (nm-MDS) and cluster analysis (CA) revealed that the chl-a variability was due to the direct influence of nutrients than the physical parameters. Correlation analysis revealed that chl-a has positive correlation with DO, NO2, NO3, PO4, and SiO4, while negative with salinity in pre-monsoon and monsoon. The composite results indicated that the study area is well oxygenated and rich in nutrients, and chl-a distribution represents typical upper ocean dynamics and food chain linked to the pristine coastal and ecologically rich ecosystem.
The ability of marine microbes to navigate toward chemical hotspots can determine their nutrient uptake and has the potential to affect the cycling of elements in the ocean. The link between bacterial navigation and nutrient cycling highlights the need to understand how chemotaxis functions in the context of marine microenvironments. Chemotaxis hinges on the stochastic binding/unbinding of molecules with surface receptors, the transduction of this information through an intracellular signaling cascade, and the activation and control of flagellar motors. The intrinsic randomness of these processes is a central challenge that cells must deal with in order to navigate, particularly under dilute conditions where noise and signal are similar in magnitude. Such conditions are ubiquitous in the ocean, where nutrient concentrations are often extremely low and subject to rapid variation in space (e.g., particulate matter, nutrient plumes) and time (e.g., diffusing sources, fluid mixing). Stochastic, biophysical models of chemotaxis have the potential to illuminate how bacteria cope with noise to efficiently navigate in such environments. At the same time, new technologies for experimentation allow for continuous interrogation—from milliseconds through to days—of bacterial responses in custom dynamic nutrient landscapes, providing unprecedented access to the behavior of chemotactic cells in microenvironments engineered to mimic those cells navigate in the wild. These recent theoretical and experimental developments have created an opportunity to derive population-level uptake from single-cell motility characteristics in ways that could inform the next generation of marine biogeochemical cycling models.