Research Topic

Developments in Acoustic, Phononic, and Mechanical Materials for Wave Control

About this Research Topic

The development of acoustic, phononic, and mechanical materials and the resulted control of wave propagation at will has been a fast-developing research field in the past decades. Negative mass density was first realized in sonic crystals near dipolar resonance of the unit cells in 2000. Since then, many ...

The development of acoustic, phononic, and mechanical materials and the resulted control of wave propagation at will has been a fast-developing research field in the past decades. Negative mass density was first realized in sonic crystals near dipolar resonance of the unit cells in 2000. Since then, many efforts have been invested for realizing largely broadened ranges of material properties compared to those in naturally existing materials, such as negative bulk modulus, double negativities, near-zero densities, etc. The efforts resulted in the development of acoustic metamaterials that have unprecedented capabilities to manipulate sound waves in unprecedented ways. A wide range of applications have been realized, such as super-resolution imaging, cloaking and thin planar lens for complex beamforming. Meanwhile, phononic crystals with different crystal lattices and periodicities were created to exhibit desired band structures for wave guiding, frequency filtering, and high-quality factor cavity design. The physical principles were applied in microscale for the control of phonons, which can be used to modulate their optical and electronic properties.

Besides the dynamical material properties, novel designs of structures were explored for the realization of unconventional static mechanical properties like negative stiffness, superlight weight and strong media, as well as coupling between compression and twisting deformations. In recent years, other physical properties including topological states, spin and orbital angular momentum, and pseudospin have emerged to achieve robust wave and soliton controls with high versatilities.

This collection of articles aims to gather recent developments and research of acoustic, phononic and mechanical materials, and the resulted novel wave control techniques to further advance this vibrant field.

Topics addressed in this Research Topic may include, but are not limited to:
• Acoustic metamaterials
• Phononic crystals
• Mechanical metamaterials
• Vibration control and elastic wave manipulations
• Topological materials
• Angular momentum and spin manipulation for wave control
• Acoustics and phonon interactions with materials, photons, and electrons
• Wave and soliton propagation control


Keywords: Acoustics, Phonons, Acoustic and Mechanical Metamaterials, Phononic Crystals, Wave Control


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

12 March 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

12 March 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..