Research Topic

Extracellular Matrix Dynamics in Biology, Bioengineering, and Pathology - Volume II

About this Research Topic

Recent studies have provided compelling empirical evidence that Extracellular Matrix (ECM) dynamics is critical for organization and maintenance of biological form and function. New evidence that the ECM is a dynamic entity comes from three major areas of investigation: 1) biology and biochemistry, 2) bioengineering and biomaterials, and 3) pathology and clinical medicine. Following the first volume Extracellular Matrix Dynamics in Biology, Bioengineering, and Pathology, the research and review articles from this collection will highlight ECM dynamics in the critical process of biological organization and maintenance; they will also present advances in ECM bioengineering and address how aberrant ECM dynamics leads to pathologies.

In metazoans, the ECM is an integral physical/chemical component featuring dynamic properties as early as the two-cell stage embryo. The ECM continues to impact biological processes as the organism advances through major developmental milestones. Thus, early morphogenesis and organogenesis continue to provide a fertile ground for the elucidation of mechanisms that underlie a dynamic ECM. The shift in perception of ECM as a dynamic entity is in no small measure attributable to the studies in physical sciences. A major thrust was provided by the application of rigorous quantitative approaches — the hallmark of bioengineering investigations — to study the dynamic interaction between the cells and ECM. What could have been a potentially complicated and intractable phenomenon in the whole organism, or, even in the whole organ, becomes tractable when the dynamic interactions between the ECM and cells are subjected to computational as well as modeling approaches. Complementing the evidence for a dynamic ECM in biology and bioengineering are novel multidisciplinary approaches allowing investigators to model the ECM using biologically derived and synthetic hydrogels and examine ECM dynamics under diverse pathobiological conditions such as wound repair, fibrosis, and cancer.

Collectively, the biological and computational approaches described here provide a strong foundation to design testable hypotheses in which the ECM is a dynamic entity equal in importance to cellular motion for life processes. By combining biological and engineering approaches, students of the ECM are now poised to explore its dynamical properties at all levels of biological organization — from molecules to whole organs.


Keywords: extracellular matrix dynamics, ECM


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent studies have provided compelling empirical evidence that Extracellular Matrix (ECM) dynamics is critical for organization and maintenance of biological form and function. New evidence that the ECM is a dynamic entity comes from three major areas of investigation: 1) biology and biochemistry, 2) bioengineering and biomaterials, and 3) pathology and clinical medicine. Following the first volume Extracellular Matrix Dynamics in Biology, Bioengineering, and Pathology, the research and review articles from this collection will highlight ECM dynamics in the critical process of biological organization and maintenance; they will also present advances in ECM bioengineering and address how aberrant ECM dynamics leads to pathologies.

In metazoans, the ECM is an integral physical/chemical component featuring dynamic properties as early as the two-cell stage embryo. The ECM continues to impact biological processes as the organism advances through major developmental milestones. Thus, early morphogenesis and organogenesis continue to provide a fertile ground for the elucidation of mechanisms that underlie a dynamic ECM. The shift in perception of ECM as a dynamic entity is in no small measure attributable to the studies in physical sciences. A major thrust was provided by the application of rigorous quantitative approaches — the hallmark of bioengineering investigations — to study the dynamic interaction between the cells and ECM. What could have been a potentially complicated and intractable phenomenon in the whole organism, or, even in the whole organ, becomes tractable when the dynamic interactions between the ECM and cells are subjected to computational as well as modeling approaches. Complementing the evidence for a dynamic ECM in biology and bioengineering are novel multidisciplinary approaches allowing investigators to model the ECM using biologically derived and synthetic hydrogels and examine ECM dynamics under diverse pathobiological conditions such as wound repair, fibrosis, and cancer.

Collectively, the biological and computational approaches described here provide a strong foundation to design testable hypotheses in which the ECM is a dynamic entity equal in importance to cellular motion for life processes. By combining biological and engineering approaches, students of the ECM are now poised to explore its dynamical properties at all levels of biological organization — from molecules to whole organs.


Keywords: extracellular matrix dynamics, ECM


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

30 September 2021 Abstract
31 January 2022 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

30 September 2021 Abstract
31 January 2022 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..