Research Topic

Insect Hematophagy: A Trip for Pathogens

  • Submission closed.

About this Research Topic

Arthropods are the most successful group of metazoa. Insects alone account for more than one million species and they show a wide spectrum of behavioral and feeding patterns. From this enormous pool of genetic diversity, ~14,000 species, scattered among 400 different genera, have developed the capacity to ...

Arthropods are the most successful group of metazoa. Insects alone account for more than one million species and they show a wide spectrum of behavioral and feeding patterns. From this enormous pool of genetic diversity, ~14,000 species, scattered among 400 different genera, have developed the capacity to feed on vertebrate blood (hematophagy). This trait evolved independently, most likely at least six times, during the Jurassic and Cretaceous periods (145-65 million years ago). Of the four main insect orders containing hematophagous species (Diptera, Hemiptera, Phthiraptera, and Siphonoptera), the Diptera are the most important because they are vectors of many devastating human and animal diseases.

Hematophagy in insects contributes principally to reproductive success and has required substantial evolutionary adaptation to accommodate behavior, digestion, iron detoxification, proteins and lipid transport and water management, among other demands. Moreover, the insect must overcome several challenges associated with blood feeding that include: platelet aggregation, vasoconstriction, blood coagulation and immune reactions that can prevent feeding success. Insects have evolved a salivary chemical mixture containing several active compounds to disarm their host’s hemostasis and inflammation. Notably, in addition to facilitating blood feeding, saliva components have been linked to the efficient transmission to human hosts of several pathogens. Vector-borne diseases account for more than 17% of all infectious diseases, causing more than 1 million deaths annually.

Successful pathogen transmission requires an insect feeding on an infected vertebrate host, subse-quent infection of the midgut cells and dissemination throughout the rest of the body. The insect becomes infectious to a human host when the pathogen reach the salivary glands and are transmitted via saliva dur-ing a second feeding. Vector competence is the intrinsic ability of a hematophagous insect to become in-fected following ingestion of infected blood and to subsequently transmit the pathogen. Hematophagous insects are phenotypically polymorphic, varies in allele types and frequencies as detected by biochemical and molecular-genetic markers, and exhibits variation in vector competence for pathogens. Understanding the degree to which pathogen evolution and genetic variation in host resistance traits play a role in disease emergence events in natural systems will improve efforts to manage future diseases risks for human popu-lations and in natural systems. The convergent evolution of hematophagy supports the diversity of forms and lifestyles seen in modern day insects as well as their complex relationships with vertebrates. Although several reports documented baseline information on genomic, transcriptomic, and proteomic profiles rele-vant to basic biology of hematophagous insects; the nature of the non-hematophagous ancestors and how those antihemostatic mechanisms evolved remain unclear. Moreover, understanding the evolution of anti-hemostatic strategies and pathogen selection pressures could contribute in the knowledge of how hema-tophagy can impact population dynamics and how these evolutionary mechanisms create and shape diver-sity in hosts and pathogens and its influence in vector competence.

Manuscripts with original research in any aspect of genetics and/or transcriptomics, proteomics and metabolomics of insect hematophagy will be considered. This Research Topic particularly welcomes manuscripts focusing on broad issues of hematophagy evolution, as well as aspects of genetic conservation, phylogeny and vector competence.



Keywords: Hematophagy, evolution, vector competence, insects, pathogen interaction


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top