In this paper, we introduce a series solution to a class of hyperbolic system of time-fractional partial differential equations with variable coefficients. The fractional derivative has been considered by the concept of Caputo. Two expansions of matrix functions are proposed and used to create series solutions for the target problem. The first one is a fractional Laurent series, and the second is a fractional power series. A new approach, via the residual power series method and the Laplace transform, is also used to find the coefficients of the series solution. In order to test our proposed method, we discuss four interesting and important applications. Numerical results are given to authenticate the efficiency and accuracy of our method and to test the validity of our obtained results. Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative arrangement on the behavior of the solution.
A large class of problems in quantum physics involve solution of the time independent Schrödinger equation in one or more space dimensions. These are boundary value problems, which in many cases only have solutions for specific (quantized) values of the total energy. In this article we describe a Python package that “automagically” transforms an analytically formulated Quantum Mechanical eigenvalue problem to a numerical form which can be handled by existing (or novel) numerical solvers. We illustrate some uses of this package. The problem is specified in terms of a small set of parameters and selectors (all provided with default values) that are easy to modify, and should be straightforward to interpret. From this the numerical details required by the solver is generated by the package, and the selected numerical solver is executed. In all cases the spatial continuum is replaced by a finite rectangular lattice. We compare common stensil discretizations of the Laplace operator with formulations involving Fast Fourier (and related trigonometric) Transforms. The numerical solutions are based on the NumPy and SciPy packages for Python 3, in particular routines from the scipy.linalg, scipy.sparse.linalg, and scipy.fftpack libraries. These, like most Python resources, are freely available for Linux, MacOS, and MSWindows. We demonstrate that some interesting problems, like the lowest eigenvalues of anharmonic oscillators, can be solved quite accurately in up to three space dimensions on a modern laptop—with some patience in the 3-dimensional case. We demonstrate that a reduction in the lattice distance, for a fixed the spatial volume, does not necessarily lead to more accurate results: A smaller lattice length increases the spectral width of the lattice Laplace operator, which in turn leads to an enhanced amplification of the numerical noise generated by round-off errors.
The quantum calculus, q-calculus, is a relatively new branch in which the derivative of a real function can be calculated without limits. In this paper, the falling body problem in a resisting medium is revisited in view of the q-calculus to the first time. The q-differential equations describing the vertical velocity and distance of the body are obtained. Accordingly, exact expressions for the vertical velocity and the vertical distance are provided. The solutions are expressed in terms of the small q-exponential function which is an elementary function in the q-calculus. The dimensionality of the obtained formulae of the velocity and the distance are also analyzed. In addition, the present exact solutions reduce to the corresponding solutions in classical Newtonian mechanics when the quantum parameter q tends to one.
Current research is intended to examine the hydro-magnetic peristaltic flow of copper-water nanofluid configured in a symmetric three-dimensional rotating channel having generalized complaint boundaries incorporating second-order velocity slip conditions and temperature-dependent viscosity effects. Strong magnetic field with Hall properties, viscous dissipation, thermal radiations, and heat source/sink phenomenon have been studied. Constitutive partial differential equations are modeled and then simplified into a coupled system of ordinary differential equations by employing lubrication approximation. Consequential governing model is tackled numerically, and the results for flow quantities and Nusselt number are physically interpreted via graphs and bar charts toward the assorted parameters. Interpreted numerical results indicate that velocity components are accelerated with augmentation in first- and second-order velocity slip parameters and variable viscosity parameter, while it is reduced with a rise in Grashof number possessing dominant effects in the central region. Also, the temperature of the fluid increases with an increase in temperature-dependent viscosity effect.
The form-I version of the new celebrated Biswas-Arshed equation is studied in this work with the aid of complex envelope ansatz method. The equation is considered when self-phase is absent and velocity dispersion is negligibly small. New Dark-bright optical soliton solution of the equation emerge from the integration. The acquired solution combines the features of dark and bright solitons in one expression. The solution obtained are not yet reported in the literature. Moreover, we showed that the equation possess conservation laws (Cls).