Research Topic

Data-driven Integrated Computational Materials Engineering for High-entropy Materials

About this Research Topic

High-entropy materials (HEMs), including alloys, ceramics, oxides, and semiconductors, have attracted enormous activities to investigate their attractive/excellent properties and potential critical applications. With the contributions of multiple principal atoms, it expects the higher configurational entropy, driving a tendency to form simple solid solutions (amorphous or crystalline) rather than complex microstructures with many compounds. Together with the high-throughput experiments and modeling, the Integrated Computational Materials Engineering (ICME) approach consisted of CALPHAD, (ab initio) molecular dynamics, phase-field simulations, finite element calculations, Monte Carlo, etc. has been supported by the Material Genome Initiative/Engineering (MGI/MGE) and are boosting the database. Toward the inheritable integrated intelligent manufacturing (I3M) era, data driven ICME is critical to accelerate the discoveries and applications of novel advanced HEMs.

In this article collection, the frontiers in HEMs will be reviewed and highlighted, presenting recent research on the fundamental understanding and theoretical modelling of the composition-processing-microstructure-property-performance relationship of HEMs. In contrast to conventional alloys based upon one principal element, HEMs have multiple principal elements, often five or more. The significantly-high entropy of the solid solution stabilizes the solid-solution phases in face-centered-cubic (FCC), body-centered-cubic (BCC), and hexagonal-close-packed (HCP) structures against intermetallic compounds. Moreover, carefully designed HEMs possess tailorable properties that far surpass their conventional alloys. Such properties in HEMs include high strength, ductility, ultra-high melting, electrical and thermal conductivities, corrosion resistance, oxidation resistance, fatigue and wear resistance. These properties will undoubtedly make HEMs of interest for use in biomedical, structural, mechanical, and energy applications. Given the novel and exciting nature of HEMs, they are poised for significant growth and present a perfect opportunity for a new symposium and research field.

Submissions should integrate different aspects of the following, including both experimental and computational aspects:
• Multi-scale computations and modelling using density functional theory, molecular dynamics, Monte Carlo simulations, phase-field and finite-elements method, and high-throughput CALPHAD modeling;
• Material fabrication and processing, such as homogenization, nanomaterials, and grain-boundary engineering;
• Advanced characterization, such as neutron and synchrotron scattering and three-dimensional (3D) atom probe;
• Thermodynamics and diffusivity: measurements and modeling;
• ICME studies of HEMs mechanical behaviors (fatigue, creep, wear, high strain rate deformation, and fracture), corrosion, physical, magnetic, electric, thermal, thermoelectric, coating, biomedical behavior, ultra-high melting, electrical and thermal conductivities, etc.
• Data mining & machine learning for accelerating the discovery of advanced HEMs.


Keywords: Data Mining, Machine Learning, Database, Properties, High-entropy materials, Modeling, Computation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

High-entropy materials (HEMs), including alloys, ceramics, oxides, and semiconductors, have attracted enormous activities to investigate their attractive/excellent properties and potential critical applications. With the contributions of multiple principal atoms, it expects the higher configurational entropy, driving a tendency to form simple solid solutions (amorphous or crystalline) rather than complex microstructures with many compounds. Together with the high-throughput experiments and modeling, the Integrated Computational Materials Engineering (ICME) approach consisted of CALPHAD, (ab initio) molecular dynamics, phase-field simulations, finite element calculations, Monte Carlo, etc. has been supported by the Material Genome Initiative/Engineering (MGI/MGE) and are boosting the database. Toward the inheritable integrated intelligent manufacturing (I3M) era, data driven ICME is critical to accelerate the discoveries and applications of novel advanced HEMs.

In this article collection, the frontiers in HEMs will be reviewed and highlighted, presenting recent research on the fundamental understanding and theoretical modelling of the composition-processing-microstructure-property-performance relationship of HEMs. In contrast to conventional alloys based upon one principal element, HEMs have multiple principal elements, often five or more. The significantly-high entropy of the solid solution stabilizes the solid-solution phases in face-centered-cubic (FCC), body-centered-cubic (BCC), and hexagonal-close-packed (HCP) structures against intermetallic compounds. Moreover, carefully designed HEMs possess tailorable properties that far surpass their conventional alloys. Such properties in HEMs include high strength, ductility, ultra-high melting, electrical and thermal conductivities, corrosion resistance, oxidation resistance, fatigue and wear resistance. These properties will undoubtedly make HEMs of interest for use in biomedical, structural, mechanical, and energy applications. Given the novel and exciting nature of HEMs, they are poised for significant growth and present a perfect opportunity for a new symposium and research field.

Submissions should integrate different aspects of the following, including both experimental and computational aspects:
• Multi-scale computations and modelling using density functional theory, molecular dynamics, Monte Carlo simulations, phase-field and finite-elements method, and high-throughput CALPHAD modeling;
• Material fabrication and processing, such as homogenization, nanomaterials, and grain-boundary engineering;
• Advanced characterization, such as neutron and synchrotron scattering and three-dimensional (3D) atom probe;
• Thermodynamics and diffusivity: measurements and modeling;
• ICME studies of HEMs mechanical behaviors (fatigue, creep, wear, high strain rate deformation, and fracture), corrosion, physical, magnetic, electric, thermal, thermoelectric, coating, biomedical behavior, ultra-high melting, electrical and thermal conductivities, etc.
• Data mining & machine learning for accelerating the discovery of advanced HEMs.


Keywords: Data Mining, Machine Learning, Database, Properties, High-entropy materials, Modeling, Computation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

30 June 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

30 June 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..