Skip to main content

About this Research Topic

Submission closed.

The Research Topic on Multiscale Lattices and Composite Materials (MLCM) is focused on the design, modeling, control and testing of unconventional lattices and composite materials at different scales, which are optimally designed by controlling the architecture of the material.

A fundamental goal of ...

The Research Topic on Multiscale Lattices and Composite Materials (MLCM) is focused on the design, modeling, control and testing of unconventional lattices and composite materials at different scales, which are optimally designed by controlling the architecture of the material.

A fundamental goal of this topic is the study of mechanical metamaterials forming next-generation cellular solids; devices; novel composites; and also building-scale structures. Taking inspiration from peculiar behaviors at multiple scales exhibited by lattice materials and nano/micro-structures (e.g., tensegrity-type response, instability, fracture, plasticity and damage), MILCM will devote special attention on the creation of complex global systems (the metamaterials) with unprecedented mechanical properties. Such a goal is directly inspired by nature, where tensegrity concepts and hierarchical structures are ubiquitous and appear, e.g., in every cell, in the microstructure of the spider silk, and in the arrangement of bones and tendons for control of locomotion. MILCM also investigates the use of multiscale lattices, fullerenes, nanotubes, and carbon nanostructures to optimally design fabrics, fibers and coatings of groundbreaking reinforcements for novel composite materials. The covered modeling approaches will be able to predict the intrinsically complex mechanical behavior of the analyzed systems, which include: nonlinear homogenization techniques, multiscale methods for interacting failure modes, and/or mixed discrete-continuum methods.

The engineering implementation of the metamaterials analyzed by the MILCM topic will take inspiration and profit from the tunability of the mechanical response of tensegrity lattices through local and global prestress. The ability of such metamaterials to display tunable band gaps, where the propagation of mechanical waves is forbidden, eventually combined with internal resonance phenomena, will be investigated, with special focus on the design of next-generation waveguides, sound-proof layers, vibration-isolation devices, and seismic metamaterials. Engineering applications will also include advanced composites with enhanced interlaminar shear strength, and improved overall strength and fracture toughness, which are enriched with functionalized carbon nanotubes, as well as particles and fibers with structural hierarchy originating from their geometric design. Additionally, MILCM will focus on the formulation and implementation of quasi-real-time structural health monitoring systems dedicated to innovative materials and structures at different scales.

Nano-, micro- and macro-scale materials and devices are studied through a closed-loop approach including the design and modeling of physical model, and the optimal control of the key design variables. An experimental characterization phase implements and verifies the theoretical predictions.

Keywords: Mechanical metamaterials, Multiscale composites, Smart materials and structures, Vibration control, Structural health monitoring


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

views

total views views downloads topic views

}
 
Top countries
Top referring sites
Loading..

Share on

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.