ORIGINAL RESEARCH article
Front. Neural Circuits
Volume 19 - 2025 | doi: 10.3389/fncir.2025.1615232
Feedforward extraction of behaviorally significant information by neocortical columns
Provisionally accepted- 1University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- 2Auburn University at Montgomery, Montgomery, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Neurons throughout the neocortex exhibit selective sensitivity to particular features of sensory input patterns. According to the prevailing views, cortical strategy is to choose features that exhibit predictable relationship to their spatial and/or temporal context. Such contextually predictable features likely make explicit the causal factors operating in the environment and thus they are likely to have perceptual/behavioral utility. The known details of functional architecture of cortical columns suggest that cortical extraction of such features is a modular nonlinear operation, in which the input layer, layer 4, performs initial nonlinear input transform generating proto-features, followed by their linear integration into output features by the basal dendrites of pyramidal cells in the upper layers. Tuning of pyramidal cells to contextually predictable features is guided by the contextual inputs their apical dendrites receive from other cortical columns via long-range horizontal or feedback connections. Our implementation of this strategy in a model of prototypical V1 cortical column, trained on natural images, reveals the presence of a limited number of contextually predictable orthogonal basis features in the image patterns appearing in the column's receptive field. Upper-layer cells generate an overcomplete Hadamard-like representation of these basis features: i.e., each cell carries information about all basis features, but with each basis feature contributing either positively or negatively in the pattern unique to that cell. In tuning selectively to contextually predictable features, upper layers perform selective filtering of the information they receive from layer 4, emphasizing information about orderly aspects of the sensed environment and downplaying local, likely to be insignificant or distracting, information. We find that to be fully effective, our feature tuning operation requires collective participation of cells across 7 minicolumns, together making up a functionally defined 150µm diameter "mesocolumn." Similarly to real V1 cortex, 80% of model upper-layer cells acquire complex-cell receptive field properties while 20% acquire simple-cell properties. Overall, the design of the model and its emergent properties are fully consistent with the known properties of cortical organization. Thus, in conclusion, our feature-extracting circuit might capture the core operation performed by cortical columns in their feedforward extraction of perceptually and behaviorally significant information.
Keywords: Visual Cortex, Layer 4, Layer 3, complex cells, minicolumn, Model, predictive coding
Received: 20 Apr 2025; Accepted: 08 Sep 2025.
Copyright: © 2025 Favorov and Kursun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Olcay Kursun, Auburn University at Montgomery, Montgomery, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.