Impact Factor 3.582
2017 JCR, Clarivate Analytics 2018

The world's most-cited Neurosciences journals

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Aging Neurosci. | doi: 10.3389/fnagi.2019.00066

5XFAD mice show early onset gap detection deficits.

  • 1University of Oregon, United States

Alzheimer’s patients show auditory temporal processing deficits very early in disease progression, before the onset of major cognitive impairments. In addition to potentially contributing to speech perception and communication deficits in patients, this also represents a potential early biomarker for Alzheimer’s. For this reason, tests of temporal processing such as gap detection have been proposed as an early diagnosis tool. For a biomarker such as gap detection deficits to have maximum clinical value, it is important to understand what underlying neuropathology it reflects. For example, temporal processing deficits could arise from alterations at cortical, midbrain, or brainstem levels. Mouse models of Alzheimer’s disease can provide the ability to reveal in detail the molecular and circuit pathology underlying disease symptoms. Here we tested whether 5XFAD mice, a leading Alzheimer’s mouse model, exhibit impaired temporal processing. We found that 5XFAD mice showed robust gap detection deficits. Gap detection deficits were first detectable at about 2 months of age and became progressively worse, especially for males and for longer gap durations. We conclude that 5XFAD mice are well-suited to serve as a model for understanding the circuit mechanisms that contribute to Alzheimer’s-related gap detection deficits.

Keywords: Alzheimer's, gap detection, mouse model, auditory processing, Acoustic Startle Response

Received: 22 Jan 2019; Accepted: 07 Mar 2019.

Edited by:

Merce Pallas, University of Barcelona, Spain

Reviewed by:

Julien Rossignol, Central Michigan University, United States
Fernando Goni, New York University, United States  

Copyright: © 2019 Kaylegian, Stebritz, Weible and Wehr. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Michael Wehr, University of Oregon, Eugene, 97403, Oregon, United States,