@ARTICLE{10.3389/fnhum.2017.00283, AUTHOR={Dupuy, Emma G. and Leconte, Pascale and Vlamynck, Elodie and Sultan, Audrey and Chesneau, Christophe and Denise, Pierre and Besnard, Stéphane and Bienvenu, Boris and Decker, Leslie M.}, TITLE={Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study)}, JOURNAL={Frontiers in Human Neuroscience}, VOLUME={11}, YEAR={2017}, URL={https://www.frontiersin.org/articles/10.3389/fnhum.2017.00283}, DOI={10.3389/fnhum.2017.00283}, ISSN={1662-5161}, ABSTRACT={Elhers-Danlos syndrome (EDS) is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS) is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i) to assess the impact of somatosensory deficit on subjective visual vertical (SVV) and postural stability; and (ii) to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles) on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side) evaluation and a postural control evaluation on a force platform (Synapsys), with or without visual information (eyes open (EO)/eyes closed (EC)). These two latter conditions performed either without orthoses, or with compression garments (CG), or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect) as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis). In addition, patients showed greater postural instability (sway area) than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML) direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly marked effect in the anteroposterior (AP) direction. Hence, this study suggests that hEDS is associated with changes in the relative contributions of somatosensory and vestibular inputs to verticality perception. Moreover, postural control impairment was offset, at least partially, by wearing somatosensory orthoses.} }