Impact Factor 3.394
2017 JCR, Clarivate Analytics 2018

The world's 3rd most-cited Physiology journal

Opinion ARTICLE

Front. Physiol., 24 April 2019 | https://doi.org/10.3389/fphys.2019.00483

“Brain-Doping,” Is It a Real Threat?

  • 1Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
  • 2Department of Experimental Psychology, Mind, Brain and Behavior Research Centre, University of Granada, Granada, Spain
  • 3Department of Basic Psychology, Autonomous University of Madrid, Madrid, Spain

Since the term “Neurodoping” was introduced (Davis, 2013; Reardon, 2016), the use of transcranial direct current stimulation (tDCS) has gained popularity in Sports Science within a short space of time, based on the same straightforward logic: if exercise is to some extent determined by brain activity, then stimulating brain areas related to exercise should improve physical and sport performance. In fact, companies like Halo Sport claim that their “do-it-yourself” tDCS device has ergogenic effects and can increase sport and exercise performance (Reardon, 2016). In a recent review in Frontiers in Physiology, Angius et al. (2017) suggested that tDCS might have a positive effect on exercise capacity, although the mechanisms of that potential benefit were unknown. However, the expectations derived from those initial studies showing tDCS as an effective technique to increase exercise performance or reduce rate of perceived exertion (RPE), have left room for many others that do not seem to support the effectiveness of tDCS in the Sports science.

Indeed, recent meta-analyses have challenged the idea that tDCS can increase exercise performance or reduce RPE, mood or pain related to exercise (Holgado et al., 2018; Lattari et al., 2018a; Machado et al., 2018). For instance, based on the analysis of 36 effect sizes, Holgado et al. (2018)showed that the effect (if any) of tDCS on exercise performance is rather small (g = 0.34) and possibly inflated by methodological artifacts and selective publication. Similarly, the results of Machado et al. (2018) support the conclusion that tDCS has no effect on measures of muscle strength, although it may have a positive effect on cycling exercise. However, even this positive result seems to be entirely dependent on a single, low-quality study. Therefore, both Holgado et al. (2018) and Machado et al. (2018) reached the same conclusion: tDCS has little or no-effect on exercise performance. Moreover, it is worth mentioning that the chances of a publication bias in this topic are particularly high, that is, many other studies with null findings may not have been published or even sent for review (Holgado et al., 2018). So far, only one meta-analysis (Lattari et al., 2018a) has concluded that tDCS may be useful to increase performance. However, upon closer inspection, these results also seem to be grossly influenced by individual studies with unusually large effect sizes (g = 3.56 for Cogiamanian et al., 2007 and g = 1.94 for Lattari et al., 2018b), casting doubts on the reliability of these effects.

The site of stimulation (Table 1), the fitness level of participants, the overly low sample sizes (average N = 15; which may lead to overestimation of effect sizes) and the likely ineffectiveness of the usual stimulation intensity (1–2 mA; cf. Vöröslakos et al., 2018) are key issues that would need to be considered in future research. Regarding stimulation intensity, recent studies have proposed that due to the high inter-individual variability in participants' electric fields, it seems that the most efficient approach to induce constable cortical changes would be to apply an individualized current intensity for each person (Esmaeilpour et al., 2018; Laakso et al., 2019). Indeed, the usual stimulation intensity does not seem to induce oscillatory brain electrical changes at rest or during exercise (e.g., Holgado et al., 2019; cf. Vöröslakos et al., 2018). Finally, the sham procedure might provide an additional source of variability, since without the appropriate procedure sham stimulation might have biological effects (Fonteneau et al., 2019).

TABLE 1
www.frontiersin.org

Table 1. The most common placement of the tDCS' electrodes in the Sport Science research and its rationale.

In our opinion, the current evidence does not support the effectiveness of tDCS devices in the sport domain. It is therefore premature to make claims regarding the ergogenic benefits of tDCS and/or its potential thread as a novel doping tool. We believe, however, that this line of scientific enquiry could provide valuable knowledge if researchers endorse sound scientific practices (e.g., pre-registration, testing larger sample, multi-lab replications, etc.), to tackle issues like the role of stimulation intensity, the site of stimulation, and the inter-individual variability.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Funding

DS is awarded with a grant PSI2016-75956-P from Ministerio de Economía, Industria y Competitividad. DH is awarded with a grant FPU14/06229 from Ministerio de Educación, Cultura y Deporte. MV is awarded with grants 2016-T1/SOC-1395, from Comunidad de Madrid (Programa de Atracción de Talento Investigador, 2016) and PSI2017-85159-P from Ministerio de Ciencia, Innovación y Universidades. The funders are not involved directly in the preparation of this manuscript.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Angius, L., Hopker, J., and Mauger, A. R. (2017). The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Psychol. 8:90. doi: 10.3389/fphys.2017.00090

PubMed Abstract | CrossRef Full Text | Google Scholar

Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., and Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 26, 242–249. doi: 10.1111/j.1460-9568.2007.05633.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Davis, N. J. (2013). Neurodoping: brain stimulation as a performance-enhancing measure. Sports Med. 43, 649–653. doi: 10.1007/s40279-013-0027-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E., Knotkova, H., et al. (2018). Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 11, 310–321. doi: 10.1016/j.brs.2017.12.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Fonteneau, C., Mondino, M., Arns, M., Baeken, C., Bikson, M., Brunoni, A. R., et al. (2019). Sham tDCS: a hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul. doi: 10.1016/j.brs.2018.12.977. [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

Holgado, D., Vadillo, M. A., and Sanabria, D. (2018). The effects of transcranial direct current stimulation on objective and subjective indexes of exercise performance: a systematic review and meta-analysis. Brain Stimul. 12, 242–250. doi: 10.1016/j.brs.2018.12.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Holgado, D., Zandonai, T., Ciria, L. F., Zabala, M., Hopker, J., and Sanabria, D. (2019). Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: evidence from oscillatory brain activity and power output. PLoS ONE 14:e0210873. doi: 10.1371/journal.pone.0210873

CrossRef Full Text | Google Scholar

Laakso, I., Mikkonen, M., Koyama, S., Hirata, A., and Tanaka, S. (2019). Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Sci. Rep. 9:626. doi: 10.1038/s41598-018-37226-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Lattari, E., Oliveira, B. R. R., Júnior, R. S. M., Neto, S. R. M., Oliveira, A. J., Neto, G. A. M., et al. (2018a). Acute effects of single dose transcranial direct current stimulation on muscle strength: A systematic review and meta-analysis. PLoS ONE 13:e0209513. doi: 10.1371/journal.pone.0209513

PubMed Abstract | CrossRef Full Text | Google Scholar

Lattari, E., Rosa Filho, B. J., Fonseca Junior, S. J., Murillo-Rodriguez, E., Rocha, N., Machado, S., et al. (2018b). Effects on volume load and ratings of perceived exertion in individuals advanced weight-training after transcranial direct current stimulation. J. Strength Cond. Res. doi: 10.1519/JSC.0000000000002434. [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

Machado, D. G. D. S., Unal, G., Andrade, S. M., Moreira, A., Altimari, L. R., Brunoni, A. R., et al. (2018). Effect of transcranial direct current stimulation on exercise performance: a systematic review and meta-analysis. Brain Stimul. doi: 10.1016/j.brs.2018.12.227. [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

Reardon, S. (2016). ‘Brain doping’ may improve athletes' performance. Nat. News 531, 283. doi: 10.1038/nature.2016.19534

PubMed Abstract | CrossRef Full Text | Google Scholar

Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., et al. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 9, 1–17. doi: 10.1038/s41467-018-02928-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: brain stimulation, exercise performance, doping, tDCS — transcranial direct current stimulation, meta-analaysis, sports performance

Citation: Holgado D, Vadillo MA and Sanabria D (2019) “Brain-Doping,” Is It a Real Threat? Front. Physiol. 10:483. doi: 10.3389/fphys.2019.00483

Received: 02 February 2019; Accepted: 08 April 2019;
Published: 24 April 2019.

Edited by:

Giovanni Messina, University of Foggia, Italy

Reviewed by:

Davide Viggiano, University of Molise, Italy

Copyright © 2019 Holgado, Vadillo and Sanabria. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Darías Holgado, dariashn@ugr.es
Daniel Sanabria, daniel@ugr.es