ORIGINAL RESEARCH article
Front. Big Data
Sec. Cybersecurity and Privacy
This article is part of the Research TopicNew Trends in AI-Generated Media and SecurityView all 11 articles
Detecting Anti-Forensic Deepfakes with Identity-Aware Multi-Branch Networks
Provisionally accepted- Central South University, Changsha, China
 
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Deepfake detection systems have achieved impressive accuracy on conventional forged images; however, they remain vulnerable to anti-forensic or adversarial samples deliberately crafted to evade detection. Such samples introduce imperceptible perturbations that conceal forgery artifacts, causing traditional binary classifiers—trained solely on real and forged data—to misclassify them as authentic. In this paper, we address this challenge by proposing a multi-channel feature extraction framework combined with a three-class classification strategy. Specifically, one channel focuses on extracting identity-preserving facial representations to capture inconsistencies in personal identity traits, while additional channels extract complementary spatial and frequency domain features to detect subtle forgery traces. These multi-channel features are fused and fed into a three-class detector capable of distinguishing real, forged, and anti-forensic samples. Experimental results on datasets incorporating adversarial deepfakes demonstrate that our method substantially improves robustness against anti-forensic attacks while maintaining high accuracy on conventional deepfake detection tasks.
Keywords: AI-generated content, image processing, Multimedia forensics, Texture Analysis, Multi-Modal
Received: 10 Oct 2025; Accepted: 04 Nov 2025.
Copyright: © 2025 Zhu and Long. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Mingyu  Zhu, 2103998679@qq.com
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
