ORIGINAL RESEARCH article
Front. Built Environ.
Sec. Geotechnical Engineering
Volume 11 - 2025 | doi: 10.3389/fbuil.2025.1568832
This article is part of the Research TopicNHERI 2015-2025: A Decade of Discovery in Natural Hazards EngineeringView all 11 articles
NHERI Centrifuge Facility: Systems-scale Hypergravity Modeling in Engineering and Scientific Research
Provisionally accepted- University of California, Davis, Davis, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The Natural Hazards Engineering Research Infrastructure (NHERI) facility at the University of California at Davis (UC Davis) is equipped with 9-m-and 1-m-radius geotechnical centrifuges that provide unique, world-class facilities for scaled modeling of complex systems. This national, open access research facility allows scientific and engineering communities to realize major advances in understanding, predicting, and improving the performance of civil infrastructure and natural systems. Large-scale centrifuge modeling of systems-level problems is particularly effective in advancing fundamental knowledge, upscaling and testing new technologies at the prototype scale, developing engineering analysis and design methods, and validating advanced computational models. The capabilities and unique role of large-scale centrifuge modeling are illustrated through four example research projects. These are followed by a discussion of envisioned future research directions and opportunities on how hypergravity modeling can be used to address natural and anthropogenic-induced loadings on civil infrastructure and natural systems.
Keywords: centrifuge, Physical modeling, geotechnical, Inverse analyses, natural hazards
Received: 30 Jan 2025; Accepted: 17 Jun 2025.
Copyright: © 2025 DeJong, WILSON, Martinez, Ziotopoulou, Ham and Boulanger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jason T. DeJong, University of California, Davis, Davis, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.