REVIEW article
Front. Drug Deliv.
Sec. Dermatological Drug Delivery
Volume 5 - 2025 | doi: 10.3389/fddev.2025.1598145
Gene Hydrogel Platforms for Targeted Skin Therapy: Bridging Hereditary Disorders, Chronic Wounds, and Immune Related Skin Diseases
Provisionally accepted- 1Jinan University, Guangzhou, China
- 2School of Medicine Jinan University Guangzhou 510632, China, GuangZhou, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Gene therapy, a pivotal cornerstone in biomedical research, has emerged as a transformative approach for addressing a wide spectrum of dermatologic conditions, including hereditary disorders, chronic wounds, and immune related skin diseases. The skin, with its expansive surface area and regenerative capacity, serves as an ideal platform for localized gene delivery. However, conventional gene therapy strategies face critical limitations, such as high costs, suboptimal transfection efficiency, immunogenicity, and off-target effects. In this context, gene hydrogels have emerged as an innovative paradigm, offering tailored physicochemical and biological functionalities to overcome these challenges.Gene hydrogels are distinguished by their tunable morphologies (e.g., particulate or bulk gel configurations), which enable precise control over therapeutic release kinetics and spatial distribution. Their three-dimensional polymeric networks recapitulate the extracellular matrix, functioning as bioactive scaffolds that enhance tissue regeneration, facilitate cell migration, and accelerate wound healing. By integrating stimuli-responsive polymers, these hydrogels achieve spatiotemporal control of gene delivery, improving target specificity while minimizing systemic exposure. Furthermore, their inherent biocompatibility and biodegradability mitigate immunogenic risks and prevent long-term residue accumulation, addressing pivotal safety concerns in clinical translation. This review systematically examines the multifaceted advantages of gene hydrogels, including their ability to bypass the stratum corneum barrier, protect genetic payloads from enzymatic degradation, and sustain localized therapeutic effects over extended periods. Recent advancements in "smart" hydrogels, responsive to pathological cues such as pH fluctuations or matrix metalloproteinase (MMP) overexpression, further underscore their potential in personalized medicine. By synergizing material science with gene-editing technologies, gene hydrogels represent a revolutionary leap toward precision dermatologic therapies. Future challenges, such as scalable manufacturing and dynamic regulatory mechanisms, are critically analyzed alongside opportunities in intelligent material design and interdisciplinary innovation. This comprehensive analysis positions gene hydrogels as a cornerstone for nextgeneration dermatologic therapeutics, bridging the gap between laboratory innovation and clinical impact.
Keywords: gene hydrogel, gene delivery, Hereditary skin disease, Wound Healing, immune related skin disease
Received: 27 Mar 2025; Accepted: 16 Jun 2025.
Copyright: © 2025 Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: LiangTao Li, Jinan University, Guangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.