- 1Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States
- 2Mathematics, Computing Sciences, Tampere University, Tampere, Finland
- 3Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- 4Biomedical Engineering Group, Department of Mechatronics, University of Innsbruck, Innsbruck, Austria
- 5Institute of Measurement and Sensor Technology, UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
Editorial on the Research Topic
Forward and inverse solvers in multi-modal electric and magnetic brain imaging: theory, implementation, and application
Understanding the complexities of brain function and structure remains one of the most challenging and exciting frontiers in neuroscience (Sporns, 2013). Advances in multi-modal brain imaging, integrating electrophysiological and magnetophysiological techniques such as non-invasive electroencephalography (EEG), invasive electroencephalography (iEEG), including both stereo-electroencephalography (sEEG), electrocorticography (ECoG), and magnetoencephalography (MEG), have provided unprecedented insights into neural dynamics (Hämäläinen et al., 1993; Gross et al., 2001; Baillet et al., 2001). A central challenge in this domain is solving the forward and inverse problems, which enable the estimation of the brain activity underlying measured signals (Baillet et al., 2001; Wolters et al., 2004; Mosher et al., 1999; Wolters et al., 2006; Piastra et al., 2021; Brette and Destexhe, 2012; Pursiainen et al., 2011).
This Research Topic aimed to bring together cutting-edge research on the theoretical foundations, computational methodologies, and practical applications of forward and inverse solvers in multi-modal electric and magnetic brain imaging. The contributions within this Research Topic span fundamental methodological advances, novel algorithmic frameworks, and state-of-the-art applications that push the boundaries of neuroimaging.
Theoretical and computational advances
One of the significant challenges in EEG/MEG source analysis is accounting for the uncertainties in tissue conductivity. Vorwerk et al. investigated the global sensitivity of EEG source analysis to tissue conductivity uncertainties, emphasizing the importance of accurate head volume conductor models in forward problem solutions (Vorwerk et al., 2014, 2019; Lucka et al., 2012). Their findings highlight how variations in tissue conductivity can significantly impact source localization accuracy, concluding that an accurate parametrization of the head volume conductor model is as important as an accurate representation of the geometry (Wolters et al., 2006; Vorwerk et al., 2014, 2019). Piastra et al. conducted a validation study using stereotactic sEEG data to assess the accuracy of head volume conductor models. Their work underscores the necessity of precise modeling in achieving reliable source localization in combination with empirical validations. Erdbrügger et al. introduced the CutFEM forward modeling approach for EEG source analysis (Miinalainen et al., 2019; Vorwerk et al., 2017; Medani et al., 2015; Dubarry et al., 2023). This method offers enhanced flexibility in handling complex geometries and tissue interfaces in head volume conductor models, contributing to more accurate forward solutions in EEG studies.
Algorithmic innovations and implementations
Advancements in algorithmic frameworks are crucial for improving source localization techniques. Luria et al. presented the SESAMEEG package, a probabilistic tool for source localization and uncertainty quantification in MEG/EEG analysis (Wipf and Nagarajan, 2009; Aydin et al., 2015; Mosher and Leahy, 1998). This package facilitates more robust and interpretable source estimates by incorporating probabilistic modeling. Ghosh et al. developed the Structured Noise Champagne algorithm, an empirical Bayesian approach for electromagnetic brain imaging that accounts for structured noise. This method enhances the reliability of source reconstructions in the presence of complex noise structures (Baillet et al., 2001; Mosher et al., 1999). Giri et al. proposed an F-ratio-based method for estimating the number of active sources in MEG data. Their approach aids in determining the optimal model complexity, balancing the trade-off between model fit and overfitting (Adler et al., 2022).
Applications and future directions
The practical impact of these methodological advancements has been demonstrated in numerous studies. Guillen et al. explored optimized high-definition transcranial direct current stimulation (tDCS) in patients with skull defects and implants, demonstrating the clinical relevance of accurate modeling in neuromodulation therapies (Carla Piastra et al., 2021; Rampersad et al., 2014; Armonaite et al., 2025; Pursiainen et al., 2018). Huang visualized interferential stimulation of human brains, providing insights into the spatial distribution of electric fields during stimulation protocols (Huang et al., 2018; Saturnino et al., 2019). This work contributes to the optimization of stimulation parameters for therapeutic interventions. Furthermore, Prieto et al. analyzed the effects of lattice layout and optimizer selection on generating optimal transcranial electrical stimulation (tES) montages using the metaheuristic L1L1 method. Their findings inform the design of more effective stimulation configurations.
Collectively, these contributions underscore the importance of integrating theoretical, computational, and practical perspectives in advancing EEG/MEG source analysis as well as tES modeling. Future research directions may include the development of standardized pipelines (Vorwerk et al., 2014; Rampersad et al., 2014; Erdbrügger et al., 2024; Medani et al., 2023; He et al., 2020), the incorporation of machine learning techniques for model selection and parameter estimation, and the expansion of open-source tools to facilitate broader accessibility and reproducibility in the field (He et al., 2020; Vorwerk et al., 2018; Oostenveld et al., 2011; Tadel et al., 2011, 2019; Gramfort et al., 2013; Delorme and Makeig, 2004; Schrader et al., 2021; Cui et al., 2024).
We extend our sincere gratitude to all authors for their high-quality contributions and to the reviewers for their thoughtful feedback. We hope this Research Topic serves as a valuable resource for both newcomers and experienced researchers aiming to advance the state of the art in neuroelectromagnetic modeling.
Author contributions
TM: Writing – original draft, Writing – review & editing. SP: Writing – review & editing. M-CP: Writing – review & editing. JV: Writing – review & editing. RL: Writing – review & editing.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Adler, A., Wax, M., and Pantazis, D. (2022). “Brain source localization by alternating projection,” in IEEE 19th International Symposium on Biomedical Imaging (ISBI) (Kolkata: IEEE), 1–5.
Armonaite, K., Assenza, G., Bertoli, M., Conti, L., Croce, P., Iorio, D.R, et al. (2025). Local neurodynamics and tDCS effects: a guide for symptom mitigation interventions. Brain Stimul. 18:288. doi: 10.1016/j.brs.2024.12.223
Aydin, Ü., Vorwerk, J., Dümpelmann, M., Küpper, P., Kugel, H., Heers, M., et al. (2015). Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis. PLoS ONE. 10:e0118753. doi: 10.1371/journal.pone.0118753
Baillet, S., Mosher, J. C., and Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal Process. Mag. 18, 14–30. doi: 10.1109/79.962275
Brette, R., and Destexhe, A., (eds.). (2012). Handbook of Neural Activity Measurement. Cambridge: Cambridge University Press, 479. doi: 10.1017/CBO9780511979958
Carla Piastra, M., van der Cruijsen, J., Piai, V., Jeukens, F. E. M., Manoochehri, M., Schouten, A. C., et al. (2021). ASH: an Automatic pipeline to generate realistic and individualized chronic Stroke volume conduction Head models. J. Neural Eng. 18:044001. doi: 10.1088/1741-2552/abf00b
Cui, W., Jeong, W., Thölke, P., Medani, T., Jerbi, K., Joshi, A. A., et al. (2024). “Neuro-GPT: towards a foundation model for EEG,” in 2024 IEEE International Symposium on Biomedical Imaging (ISBI); May 27–30, Athens, Greece. p. 1–5. doi: 10.1109/ISBI56570.2024.10635453
Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009
Dubarry, A.- S., Mosher, J. C., Dalal, S. S., and Bénar, C. G. (2023). What are the Promises, and Challenges of Simultaneous MEG and Intracranial Recordings? Studies in Neuroscience, Psychology and Behavioral Economics. Cham: Springer International Publishing, 199–216. doi: 10.1007/978-3-031-20910-9_13
Erdbrügger, T., Antonakakis, M., Aydin, Ü., Westhoff, A., Höltershinken, M., Vorwerk, J., et al. (2024). The University of Münster DUNEuro-Based Pipeline to Create Personalized Head Models with Calibrated Skull Conductivity for EEG/MEG Source Analysis and Optimized Multi-Channel tES. Genève: Zenodo.
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267. doi: 10.3389/fnins.2013.00267
Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., Salmelin, R., et al. (2001). Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA. 98, 694–699. doi: 10.1073/pnas.98.2.694
Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497. doi: 10.1103/RevModPhys.65.413
He, Q., Rezaei, A., and Pursiainen, S. (2020). Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated FEM tool for forward and inverse computations in Matlab. Neuroinformatics 18, 237–250. doi: 10.1007/s12021-019-09436-9
Huang, Y., Datta, A., Bikson, M., and Parra, L. C. (2018). ROAST: An Open-Source, Fully-Automated, Realistic Volumetric-Approach-Based Simulator For TES. Available online at: https://ieeexplore.ieee.org/abstract/document/8513086 (accessed May 12, 2025).
Lucka, F., Pursiainen, S., Burger, M., and Wolters, C. H. (2012). Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents. Neuroimage 61, 1364–1382. doi: 10.1016/j.neuroimage.2012.04.017
Medani, T., Garcia-Prieto, J., Tadel, F., Antonakakis, M., Erdbrügger, T., Höltershinken, M., et al. (2023). Brainstorm-DUNEuro: an integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity. Neuroimage 267:119851. doi: 10.1016/j.neuroimage.2022.119851
Medani, T., Lautru, D., Schwartz, D., Ren, Z., and Sou, G. F. E. M. (2015). method for the EEG forward problem and improvement based on modification of the Saint Venant's method. Prog. Electromagnet. Res. 153, 11–22. doi: 10.2528/PIER15050102
Miinalainen, T., Rezaei, A., Us, D., Nüßing, A., Engwer, C., Wolters, C. H., et al. (2019). A realistic, accurate and fast source modeling approach for the EEG forward problem. Neuroimage 184, 56–67. doi: 10.1016/j.neuroimage.2018.08.054
Mosher, J. C., and Leahy, R. M. (1998). Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng. 45, 1342–1354. doi: 10.1109/10.725331
Mosher, J. C., Leahy, R. M., and Lewis, P. S. E. E. G. (1999). and MEG: forward solutions for inverse methods. IEEE Trans. Biomed. Eng. 46, 245–259. doi: 10.1109/10.748978
Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M.. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/2011/156869
Piastra, M. C., Nüßing, A., Vorwerk, J., Clerc, M., Engwer, C., Wolters, C. H. A., et al. (2021). comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Hum. Brain Mapp. 42, 978–992. doi: 10.1002/hbm.25272
Pursiainen, S., Agsten, B., Wagner, S., and Wolters, C. H. (2018). Advanced boundary electrode modeling for tES and parallel tES/EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 37–44. doi: 10.1109/TNSRE.2017.2748930
Pursiainen, S., Sorrentino, A., Campi, C., and Piana, M. (2011). Forward simulation and inverse dipole localization with the lowest order Raviart—Thomas elements for electroencephalography. Inverse Probl. 27:045003. doi: 10.1088/0266-5611/27/4/045003
Rampersad, S. M., Janssen, A. M., Lucka, F., Aydin, Ü., Lanfer, B., Lew, S., et al. (2014). Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 441–452. doi: 10.1109/TNSRE.2014.2308997
Saturnino, G. B., Puonti, O., Nielsen, J. D., Antonenko, D., Madsen, K. H., Thielscher, A., et al. (2019). “SimNIBS 2.1: A comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation,” in Brain and Human Body Modeling (Cham: Springer International Publishing), 3–25.
Schrader, S., Westhoff, A., Piastra, M. C., Miinalainen, T., Pursiainen, S., Vorwerk, J., et al. (2021). DUNEuro-A software toolbox for forward modeling in bioelectromagnetism. PLoS ONE. 16:e0252431. doi: 10.1371/journal.pone.0252431
Sporns, O. (2013). Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247–262. doi: 10.31887/DCNS.2013.15.3/osporns
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011:879716. doi: 10.1155/2011/879716
Tadel, F., Bock, E., Niso, G., Mosher, J. C., Cousineau, M., Pantazis, D., et al. (2019). MEG/EEG group analysis with brainstorm. Front. Neurosci. 13:76. doi: 10.3389/fnins.2019.00076
Vorwerk, J., Aydin, Ü., Wolters, C. H., and Butson, C. R. (2019). Influence of head tissue conductivity uncertainties on EEG dipole reconstruction. Front. Neurosci. 13:531. doi: 10.3389/fnins.2019.00531
Vorwerk, J., Cho, J.-H., Rampp, S., Hamer, H., Knösche, T. R., et al. (2014). guideline for head volume conductor modeling in EEG and MEG. Neuroimage. 100, 590–607. doi: 10.1016/j.neuroimage.2014.06.040
Vorwerk, J., Engwer, C., Pursiainen, S., and Wolters, C. H. A. (2017). mixed finite element method to solve the EEG forward problem. IEEE Trans. Med. Imaging. 36, 930–941. doi: 10.1109/TMI.2016.2624634
Vorwerk, J., Oostenveld, R., Piastra, M. C., Magyari, L., and Wolters, C. H. (2018). The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed. Eng. Online 17:37. doi: 10.1186/s12938-018-0463-y
Wipf, D., and Nagarajan, S. A. (2009). unified Bayesian framework for MEG/EEG source imaging. Neuroimage. 44, 947–966. doi: 10.1016/j.neuroimage.2008.02.059
Wolters, C. H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M. A., and MacLeod, R. S. (2006). Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage 30, 813–826. doi: 10.1016/j.neuroimage.2005.10.014
Keywords: EEG/MEG, sEEG/ECoG, forward and inverse analyses, modeling, simulation, sensitivity analysis
Citation: Medani T, Pursiainen S, Piastra M-C, Vorwerk J and Leahy RM (2025) Editorial: Forward and inverse solvers in multi-modal electric and magnetic brain imaging: theory, implementation, and application. Front. Hum. Neurosci. 19:1629489. doi: 10.3389/fnhum.2025.1629489
Received: 15 May 2025; Accepted: 21 May 2025;
Published: 10 June 2025.
Edited and reviewed by: Gernot R. Müller-Putz, Graz University of Technology, Austria
Copyright © 2025 Medani, Pursiainen, Piastra, Vorwerk and Leahy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Takfarinas Medani, TUVEQU5JQFVTQy5FRFU=