ORIGINAL RESEARCH article
Front. Microbiomes
Sec. Host and Microbe Associations
Volume 4 - 2025 | doi: 10.3389/frmbi.2025.1567816
Microbiome Dynamics in Tank-and Pond-Reared GIFT Tilapia
Provisionally accepted- 1WorldFish (Malaysia), Penang, Malaysia
- 2Patriot Biotech Sdn Bhd, Bandar Sunway, Selangor, Malaysia
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Tilapia (Oreochromis spp.) are among the most widely cultivated freshwater finfish species worldwide. The industry increasingly relies on tilapia strains selected for improved growth and other traits, particularly the Genetically Improved Farmed Tilapia (GIFT) strain. Despite the industry’s reliance on tilapia, knowledge of microbiome dynamics in reared tilapia remains limited. Understanding normal successional patterns in the microbiome of farmed tilapia is essential for identifying the characteristics that constitute a healthy microbial community. In this study, we assessed the microbiomes of tank and pond-reared GIFT tilapia by analyzing 568 samples, including water, gut, skin, and gill microbiomes of tilapia, from tank systems housing the source GIFT populations in Malaysia. We compared them to those reared in earthen ponds on another farm in Malaysia. A total of 2,307 amplicon sequence variants (ASVs) were identified, encompassing a broad taxonomic diversity of 39 phyla, 86 classes, 180 orders, 299 families, 501 genera, and 399 species. Our findings elucidated distinct microbial community structures between rearing environments and across fish tissues, shedding light on intricate host-microbe interactions shaped by environmental conditions and management practices. The gut microbiome of tank-reared tilapia was dominated by Fusobacteriota (71.14%), in contrast to pond-reared fish (22%). At the same time, other taxa, such as Bacteroidota, Firmicutes_A, and Cyanobacteria, also varied markedly between environments and sampling periods. Skin and gill samples exhibited notable variability in the relative abundances of Fusobacteriota and Deinococcota between the two rearing sites. Principal Coordinates Analysis (PCoA) highlighted the distinct clustering of samples by rearing environment, particularly within gut microbiomes. Biomarkers such as Cyanobiaceae (pond water) and Sphingomonadaceae (tank water) underscored the impact of rearing conditions on microbial composition. These results establish valuable baseline information on the types of bacteria associated with healthy, genetically defined (GIFT) tilapia strains. This foundational information will help identify specific microbial taxa associated with beneficial or detrimental effects on tilapia health and productivity across varying rearing conditions. Such insights can guide the development of practical microbiome monitoring strategies, such as early-warning tools for farm health, and inform targeted interventions to improve aquaculture performance.
Keywords: GIFT tilapia, 16S V4 rRNA sequencing, amplicon sequence variants (ASVs), MicrobiomeAnalyst, Principal coordinates analysis (PCoA), aquaculture systems (tank vs. pond), Linear discriminant analysis effect size (LEfSe), linear discriminant analysis (LDA)
Received: 28 Jan 2025; Accepted: 28 Jul 2025.
Copyright: © 2025 Delamare-Deboutteville, Mahmuddin, Gan, Rodde, Khor, Verner-Jeffreys, Mohan Chadag and Benzie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jerome Delamare-Deboutteville, WorldFish (Malaysia), Penang, 11960, Malaysia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.