The conventional design method of concrete mix ratio relies on a large number of tests for trial mixing and optimization, and the workload is massive. It is challenging to cope with today's diverse raw materials and the concrete's specific performance to fit modern concrete development. To innovate the design method of concrete mix ratio and effectively use the various complex novel raw materials, the traditional mix ratio test method can be replaced with the intelligent optimization algorithm, and the concrete performance prediction can be realized rapidly and accurately. The mixed ratio of the rubber fiber concrete was designed with its 28-day strength test. Then the range and variance analysis of the orthogonal test results were carried out to determine the optimal mix ratio and its influencing factors. A data set containing 114 sets of valid test data was collected by combining the rubber concrete mix test data published in recent years. Based on this data set, there are six influencing factors; rubber content, rubber particle size, and polypropylene fiber content are considered as the input variables, and the 28-day concrete compression, splitting tensile, and flexural strength are considered as the output variables. A strength prediction model of rubber fiber concrete is established based on the extreme learning machine (ELM). For verifying the ELM prediction model's performance, this article has conducted a comparison experiment between this model and other intelligent algorithm models. The results show that the model has the advantages of high accuracy and high generalization ability compared with other algorithm models such as conventional neural networks. It can be used as an effective method for predicting concrete performance. The method allows for the innovation and development of concrete mixing technology.
Compressive strength is probably one the most crucial properties of concrete material. For existing structures, core samples are drilled and tested to obtain the concrete compressive strength. Many times, taking core samples is not feasible, and as a result, nondestructive methods to examine the concrete are required. The rebound hammer test is one of the most popular methods to estimate concrete compressive strength without causing damage to the existing structure. The test is inexpensive and can be easily conducted compared to other nondestructive testing methods. Also, concrete compressive strength estimations can be obtained almost instantly. However, previous results have shown that concrete compressive strength estimations obtained from rebound hammer tests are not very accurate. As a result, this research attempts to apply artificial intelligence prediction models to estimate concrete compressive strength using data from in situ rebound hammer tests. The results show that artificial intelligence methods can effectively improve in situ concrete compressive strength estimations in rebound hammer tests.
To maintain infrastructure safety and integrity, nondestructive evaluation (NDE) technologies are often used for detection of subsurface defects and for holistic condition assessment of structures. While the rapid advances in data collection and the diversity of available sensing technologies provide new opportunities, the ability to efficiently process data and combine heterogeneous data sources to make robust decisions remains a challenge. Heterogeneous NDE measurements often conflict with one another and methods to visualize integrated results are usually developed ad hoc. In this work, a framework is presented to support fusion of multiple NDE techniques in order to improve both detection and quantification accuracy while also improving the visualization of NDE results. For data sources with waveform representations, the discrete wavelet transform (DWT) is used to extract salient features and facilitate fusion with scalar-valued NDE measurements. The description of a signal in terms of its salient features using a wavelet transform allows for capturing the significance of the original data, while suppressing measurement noise. The complete set of measurements is then fused using nonparametric machine learning so as to relax the need for Bayesian assumptions regarding statistical distributions. A novel visualization schema based on classifier confidence intervals is then employed to support holistic visualization and decision making. To validate the capabilities of the proposed methodology, an experimental prototype system was created and tested from NDE measurements of laboratory-scale bridge decks at Turner-Fairbank highway research center (TFHRC). The laboratory decks exhibit various types of artificial defects and several non-destructive tests were previously carried out by research center technicians to characterize the existing damages. The results suggest that the chosen feature extraction process, in this case the DWT, plays a critical role in classifier performance. The experimental evaluation also indicates a need for nonlinear machine learning algorithms for optimal fusion performance. In particular, support vector machines provided the most robust and consistent data fusion and defect detection capabilities. Overall, data fusion combinations are shown to provide more accurate and consistent detection results when compared to single NDE detection approaches, particularly for the detection of subsurface delamination.
A grout sleeve connection is a typical kind of joint in prefabricated structures. However, for construction and manufacturing reasons, defects in this kind of joint are usually inevitable. The joint quality of a prefabricated structure has a significant influence on its overall performance and can lead to structural failure. Due to the complexity of various types of materials used in grout sleeve connections, traditional non-destructive testing methods, such as Acoustic Emission (AE), Ultrasonic Testing (UT), Guided Wave Testing (GW), are facing great challenges. The recent development of deep learning technology provides a new opportunity to solve this problem. Deep learning can learn the inherent rules and abstract hierarchies of sample data, and it has a powerful ability to extract the intrinsic features of training data in complex classification tasks. This paper illustrates a deep learning framework for the identification of joint defects in prefabricated structures. In this method, defect features are extracted from the acceleration time history response of a prefabricated structure using a convolutional neural network. The proposed method is validated by vibration experiments on a half-scaled, two-floor prefabricated frame structure with column rebars spliced by different defective grout sleeves.
To investigate the similarities and differences of mechanical behavior between the bamboo-concrete connections and the wood-concrete connections, thirty-six specimens were tested through push-out tests with the material type (bamboo or wood), concrete strength and dowel diameter as test parameters. In addition to the linear variable displacement transducer the digital image correlation was also used to obtain the slip distribution of the whole field of the specimens, which was conducive to the further detailed analysis of the slip distribution and a comprehensive understanding of the load-slip relationship. The results showed that the failure modes of the bamboo-concrete connections were similar to that of the wood-concrete connections, such as the concrete failure near the joint and the dowels bending in different degrees. The load-slip curves of the two kinds of connections were similar, which could be summarized as the elastic section, strengthening section and descending section. The shear stiffness and capacity of bamboo-concrete connections were higher than that of wood-concrete connections, and the shear capacity increased with the increase of dowel diameter and concrete strength. The slip distribution of the left and right sides of the specimen was basically identical. The load-transfer performance of the dowel was excellent. Finally, the prediction method of shear capacity and load-slip curve model of composite connections were proposed and verified to be effective.