Impact Factor 3.634 | CiteScore 3.51
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Endocrinol. | doi: 10.3389/fendo.2019.00499

ERβ Accelerates Diabetic Wound Healing by Ameliorating Hyperglycemia-Induced Persistent Oxidative Stress

 XUEQING ZHOU1, MIN LI2, MEIFANG XIAO3, QIONGFANG RUAN2, ZHIGANG CHU2, ZIQING YE2, LIYAN ZHONG3, HAIMOU ZHANG4, XIAODONG HUANG2, WEIGUO XIE2, LING LI3 and  PAUL YAO2*
  • 1Zhongnan Hospital, Wuhan University, China
  • 2Wuhan Third Hospital, China
  • 3Hainan Maternal and Child Health Hospital, China
  • 4Hubei University, China

Delayed wound healing in diabetic patients is a serious diabetic complication, resulting in major health problems as well as high mortality and disability. The detailed mechanism still needs to be fully understood. In this study, we aim to investigate potential mechanisms and explore an efficient strategy for clinical treatment of diabetic wound healing. Human umbilical endothelial cells were exposed to hyperglycemia for 4 days, then switched to normoglycemia for an additional 4 days. The cells were harvested for the analysis of reactive oxygen species (ROS) generation, gene expression and VEGF signaling pathway. Furthermore, the diabetic wound model was established in rats for the evaluation of wound healing rates under the treatment of either ERβ agonist/antagonist or SOD mimetic MnTBAP. Our results show that transient hyperglycemia exposure results in persistent ROS overgeneration after the switch to normoglycemia, along with suppressed expression of ERβ, SOD2 and the VEGF signaling pathway. Either ERβ expression or activation diminishes ROS generation. In vivo experiments with diabetic rats show that ERβ activation or SOD mimetic MnTBAP diminishes ROS generation in tissues and accelerates diabetic wound healing. Transient hyperglycemia exposure induces ROS generation and suppresses ERβ expression, subsequently resulting in SOD2 suppression with additional elevated ROS generation. This forms a positive-feed forward loop for ROS generation with persistent oxidative stress. ERβ expression or activation breaks this loop and ameliorates this effect, thereby accelerating diabetic wound healing. We conclude that ERβ accelerates diabetic wound healing by ameliorating hyperglycemia-induced persistent oxidative stress. This provides a new strategy for clinical treatment of diabetic wound healing based on ERβ activation.

Keywords: ERβ, SOD2, Mitochondria, Oxidative Stress, Wound Healing

Received: 19 Dec 2018; Accepted: 09 Jul 2019.

Edited by:

Undurti N. Das, UND Life Sciences LLC, United States

Reviewed by:

Prasad U. Kasbekar, Bhatia Hospital, India
Zhujiayuan J. Zhu, First Affiliated Hospital of Sun Yat-sen University, China  

Copyright: © 2019 ZHOU, LI, XIAO, RUAN, CHU, YE, ZHONG, ZHANG, HUANG, XIE, LI and YAO. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Prof. PAUL YAO, Wuhan Third Hospital, Wuhan, Hubei Province, China, vasilis112@yahoo.com