Skip to main content

MINI REVIEW article

Front. Genet., 23 January 2023
Sec. Pharmacogenetics and Pharmacogenomics
This article is part of the Research Topic The Role of Pharmacogenomics in Addressing Health Disparities: The Path, The Promise, and The Barriers View all 7 articles

Pharmacogenomics and health disparities, are we helping?

Sherin Shaaban,
Sherin Shaaban1,2*Yuan Ji,Yuan Ji1,2
  • 1Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
  • 2ARUP Laboratories, Salt Lake City, Utah, United States

Pharmacogenomics has been at the forefront of precision medicine during the last few decades. Precision medicine carries the potential of improving health outcomes at both the individual as well as population levels. To harness the benefits of its initiatives, careful dissection of existing health disparities as they relate to precision medicine is of paramount importance. Attempting to address the existing disparities at the early stages of design and implementation of these efforts is the only guarantee of a successful just outcome. In this review, we glance at a few determinants of existing health disparities as they intersect with pharmacogenomics research and implementation. In our opinion, highlighting these disparities is imperative for the purpose of researching meaningful solutions. Failing to identify, and hence address, these disparities in the context of the current and future precision medicine initiatives would leave an already strained health system, even more inundated with inequality.

Introduction

The COVID-19 pandemic has helped expose the staggering rates of health disparities both domestically and world-wide, yet those disparities have long been demonstrated. The root causes continue to be debated with the goal of identifying future applicable solutions (Braveman and Gottlieb, 2014; Weinstein, 2017; Lee et al., 2020; Landrigan et al., 2021). Precision medicine initiatives carry a lot of promise in addressing these disparities with the potential to reduce morbidity and mortality for millions of people, while decreasing the cost and improving the quality of health care (Ginsburg and Phillips, 2018; Sisodiya, 2021). Without concerted efforts towards inclusion of minorities and disadvantaged populations in the research and development of such initiatives, what would have been potentially promising, could end up being a new roadblock that widens the already existing gaps. One of the most promising areas of precision medicine is pharmacogenomics (PGx), the science that utilizes genetic variation to individualize drug therapy. While the field has been growing exponentially over the last few decades with great potential, there is no evidence that the pattern of the implementation or utilization of PGx is predictive of a path guaranteeing health equity in such efforts.

Health disparities are preventable differences in the burden of disease, injury or opportunities to achieve optimal health that are experienced by socially disadvantaged populations (CDC. Health Disparities, 2022). In the United States (US), federal regulations define socially disadvantaged individuals as those who have been subjected to racial or ethnic prejudice or cultural bias within the American society because of their identities as members of groups and without regard to their individual qualities. These prejudices could be due to sex, age, location, occupation, race, ethnicity, religion, citizenship status, disability, and sexual orientation or gender identity (CFR, 2022; Ivers, 2022). The grave toll of health disparities far exceeds the direct harm to the disadvantaged individual into the whole society in terms of lost productivity, increased health care costs, and excess morbidity and mortality (LaVeist et al., 2011; Bush, 2018; Essien et al., 2021). Addressing these health disparities is not merely an issue of aspiring to achieve equity, but an investment into reducing avoidable health-care costs and towards building productive healthy societies. The US congress-commissioned report published in 2022, addressing the representation in clinical trials and research states that: “Despite greater diversity, deep disparities in health are persistent, pervasive, and costly. As the United States becomes more diverse every day, without major advancements in the inclusion of underrepresented and excluded populations in health research, failing to reach these growing communities will only prove more costly over time” (Bibbins-Domingo and Helman, 2022). Here, we review some of the determinants of health disparities in the context of PGx research and implementation.

PGx and implications of genetic ancestry

According to the National Human Genome Research Institute, genetic ancestry is defined as the information about the people that an individual is biologically descended from, including their genetic relationship (https://www.genome.gov/genetics-glossary/Genetic-Ancestry). People of different genetic ancestries have different frequencies and severity of disorders as well as variance in response to therapeutic agents (Ortega and Meyers, 2014; Ramamoorthy et al., 2015; Gu et al., 2017; Shah and Gaedigk, 2018). PGx can help identify the genetic variation underlying interindividual differences in response to medication and therefore can better instruct which medication and which dosage to prescribe. Yet, most available research studies and clinical trials in the field of PGx have been conducted in either individuals of European descent or relied on genome-wide association studies (GWAS) which have long been criticized for lack of diversity (Haga, 2010; Sirugo et al., 2019; Magavern et al., 2022; Davis and Limdi, 2021). In a review article investigating the diversity in precision medicine and PGx research studies, the authors analyzed 146 studies, of which 104 were conducted in north America (71%), 26 in Asia (18%) and 16 studies were conducted elsewhere (Africa, Australia, Europe, and South America) (Popejoy, 2019). Given that over 77% of the world population reside in Asia and Africa (UN, 2022), the concentration of such studies outside these continents carries significant implications on their clinical utility outside North America, or even for non-European populations residing within North America (Popejoy and Fullerton, 2016; Popejoy, 2019; Sirugo et al., 2019). Taking Warfarin as an example, the drug was approved as an anticoagulant in the year 1954 (Lim, 2017), yet proper dosing remains a main challenge given its extremely narrow therapeutic index (Johnson and Cavallari, 2015). In 2007 the US Food and Drug Administration (FDA) relabeled warfarin with dosing recommendations based on genetic variation in CYP2C9 or VKORC1 for optimization (Bodin et al., 2005; FDA Coumadin, 2022). In 2016 the Clinical Pharmacogenetics Implementation Consortium (CPIC) updated their PGx-guided Warfarin dosing to add CYP4F2 and rs127777823 to CYP2C9 and VKORC1. Given that CPIC relies on available literature, the limited diversity among participants in the studies used to generate the guidelines, is an acknowledged limitation of such effort (Johnson et al., 2017). To put this in context, in the United States, the second largest racial group after white Caucasians is the Hispanics/Latinos which made up 18.9% of the population, while the multiracial population was the fastest growing group based on the latest census (https://www.census.gov/) (Roman et al., 2020; Nicholas Jones et al., 2020). Individuals of a Hispanic origin, as well as African Americans (AA), are considered to be at an especially high risk for poor outcomes after anti-coagulation therapy with warfarin (Birman-Deych et al., 2006; Shen et al., 2007; Shen et al., 2008), yet they remain largely underrepresented in trials aiming at developing dosing algorithms for Warfarin (Bress et al., 2012; Duconge et al., 2015). Furthermore, the Hispanics are an admixed population of Europeans, Native American and West-Africans (Bryc et al., 2010; Baran et al., 2012) and therefore extrapolating the findings of PGx studies conducted among Europeans to such an admixed population carries the risk of undermining the validity of any evidence that supports the implementation of PGx and precision medicine and remains a flawed practice (Ramos et al., 2012; Claudio-Campos et al., 2015; Grinde et al., 2019; Lee et al., 2019). Similarly, findings from the few studies conducted among AAs should not be directly extrapolated to other black populations such as sub-Saharan Africans or Afro-Brazilians given that the genetic architecture of AAs is distinct from that of other Africans (Zakharia et al., 2009; Dandara et al., 2022). Moreover, the development of therapeutics relies on evidence from clinical trials conducted mainly in non-Hispanic Whites or less frequently among Asian populations. Therefore, African, Hispanic, or native American-specific variants are often missed during drug discovery and development and the significance of these variants will only be realized upon release of such drugs to individuals of the underrepresented populations with the development of adverse reactions (Flores et al., 2021; Venkatakrishnan and Benincosa, 2022). In addition to the need for prioritizing enrollment of large numbers of participants from less-studied populations for GWASs and clinical trials, alternative genome-wide approaches such as admixture mapping or utilization of ancestry informative pharmacogenetic loci to allow for incorporating data reflecting the genetic diversity of different ancestral backgrounds is equally critical (Enoch et al., 2006; Ramos et al., 2014; Yang et al., 2021). While gene-based dosing models have been developed, they are proven to be stronger when the data are corrected for admixture (Alzubiedi and Saleh, 2016; Shendre et al., 2018). A growing number of PGx studies focusing on biogeographically defined populations particularly among less studied groups such as Native Americans, Africans or South Asians populations are to be applauded (Ortega and Meyers, 2014; Bonifaz-Pena et al., 2014; Hariprakash et al., 2018; Nagar et al., 2019; Ahsan et al., 2020)

Sex and gender-based PGx

Despite the robust evidence of varied response to medication between men and women; one cannot help but wonder why women continue to be subject to more adverse drug events, compared to men, with women having 1.5- to 1.7-fold greater risk of developing such adverse events (Rademaker, 2001; Soldin and Mattison, 2009; Zucker and Prendergast, 2020; FDA, 2021; Madla et al., 2021). This could very well result from treatment protocols relying on clinical trials dominated by male participants with disregard of the influence of sex and gender on drug safety and efficacy (Manteuffel et al., 2014; Ravindran et al., 2020). The difference in response to drugs between sexes has been attributed to many factors including biological differences in pharmacodynamics and pharmacokinetics (e.g., differences in absorption, distribution, metabolism, and excretion (ADME) genes, smaller volume of distribution, higher body fat in women, receptor numbers or binding), or to biological processes such as pregnancy and menopause (Soldin and Mattison, 2009; Mezzalira and Toffoli, 2021). While drug therapy is prevalent during pregnancy, how and why drug disposition is altered in pregnant women remains poorly studied and not all commercially available medications are tested for safety and efficacy during pregnancy (Buhimschi and Weiner, 2009; Jeong, 2010; Ito, 2016; Haas et al., 2018; Betcher and George, 2020). Taking another stage of female life, menopause is inevitable in all women, yet variations in timing, symptoms, and their severity, as well as needs and response to menopausal hormonal therapy varies significantly (Minkin, 2019). Estrogen remains the most effective medication used in menopause to treat its symptoms as well as to prevent serious related diseases such as cardiovascular diseases, osteoporosis, or even early death (Moyer et al., 2016; Paciuc, 2020). The influence of genetic variation on estrogen efficacy and metabolism has been well studied, yet genetically-based algorithms for estrogen administration and dosing relevant to its contribution to increased risk of development of venous thromboembolic events remain lacking (Wall et al., 2014; Moyer et al., 2018). Clinical trials to better understand the genetics underlying this thrombotic susceptibility are needed and could lead to establishing the safety of estrogen use among women who do not share that genetic risk (Herrington and Klein, 1985; Wall et al., 2014; Vinogradova et al., 2019; Abou-Ismail et al., 2020).

A new growing area of interest in PGx, is the study of the effect of variations in sex chromosomes between men and women (e.g., X-chromosome inactivation, gene mutations, differences in number of microRNAs or epigenetic deregulation, etc.) that could explain variations in drug response in general or response to certain classes of medications such as increasing resistance to cancer immunotherapy (Care et al., 2018; Irelli et al., 2020; Mezzalira and Toffoli, 2021).

In addition to inadequate studies addressing safety or proper dosing during various stages of a woman’s life, women’s under-representation in drug clinical trials remains a significant hurdle. The FDA and the National institute of health (NIH) published policies and guidelines to encourage women’s participation and inclusion in research and clinical trials (Nasem Women and Health Research, 1994; NIH, 2017; FDA Research, 2019). Despite these efforts having shown relative success in increasing recruitment among white women, this has not similarly translated to increase in recruitment of women of color (Camidge et al., 2021; Bierer et al., 2022). Larger scale PGx studies with adequate enrollment of female participants, including underserved women, as well as the emerging science of gender medicine or sex-based medicine could potentially be the answer to addressing the existing sex gap in the outcomes of treatments and/or toxicity (Mauvais-Jarvis et al., 2021; Mezzalira and Toffoli, 2021).

Treatment access and socioeconomics inequalities

Individuals on the lower scale of socioeconomic status (SES) determinants e.g., income, education or racial ancestry are similarly subject to health disparities including less access to proper medication or diagnostic testing (Plumper et al., 2018; Ji et al., 2020; Trivedi et al., 2020; Salmond and Dorsen, 2022). This can be demonstrated for example by the case of direct oral anticoagulants (DOACs). While DOACs have become the standard of care for patients with deep vein thrombosis compared to Vitamin K antagonists, low-income and black patients consistently receive less prescriptions of DOACs even when they are insured (Nathan et al., 2019). Similarly, utilization of DOACs remain limited in African countries due to its unaffordability because of patent laws, in addition to lack of clinical trials to address its safety in African populations (Semakula et al., 2021; Dandara et al., 2022). With a growing body of studies of DOACs PGx, efforts to enroll minorities, which most probably would also fall on a lower level of SES, is of paramount importance. Additionally, if the landscape of reimbursement practices and insurance coverage for genetic testing including PGx does not improve, test access inequities will persist (Lee et al., 2018; Qureshi et al., 2022). Another example is cancer mortality rates and newer anti-cancer drugs. While the overall US mortality from all cancers declined by 26% from 1990 to 2015, the interventions to decrease that rate has not been uniform in terms of ancestry, region of residence or SES (Siegel et al., 2011; Robbins et al., 2012; Siegel et al., 2015; Ma et al., 2019). The utilization of human epidermal growth factor receptor 2 (HER2)-targeted therapies such as trastuzumab demonstrates the intricacies between SES and health disparities. (HER2)-targeted therapies have proven to be highly effective at treating breast cancer (Loibl and Gianni, 2017; Kay et al., 2021), yet clear racial and socio-economic disparities exist with regards to the receipt of such an effective medication, with black women being 25% less likely to receive trastuzumab than white women, with that percentage becoming even higher among poorer patients. The single most significant factor determining not receiving HER-2 therapies is lack of financial resources (Reeder-Hayes et al., 2016; Adusumilli et al., 2017). (HER2)-targeted therapies have many side effects including risk for cardiotoxicity. These side effects occur at particularly higher rates among AA women and in patients with additional risk factors such as Diabetes and Hypertension which in turn are prevalent in communities with lower SES including among poor white individuals (Gaskin et al., 2014; Glover et al., 2020; Price-Haywood et al., 2020; Al-Sadawi et al., 2021). Studies to decipher the genetic contributors to the heterogeneity in response and the side-effects of (HER2)-targeted therapies and other anti-neoplastic drugs are evolving including novel approaches utilizing PGx. Unfortunately, most of these studies continue to be conducted among majority white Caucasian populations (Wells et al., 2017; Garcia-Pavia et al., 2019; Jeibouei et al., 2019).

Unsurprisingly and given how intertwined race/ancestry is to socioeconomic resources, it was inevitable to repeatedly reference race and ancestry in this section that was meant to address the relation between SES and PGx access or utilization (Ribisl et al., 1998; NIH, 2004; Williams et al., 2016).

Pediatric to geriatric PGx

Our knowledge about the clinical utility and cost-effectiveness of PGx among the pediatric population remains limited even for medications with available guidelines. CPIC has so far published 26 gene/drug clinical practice guidelines using evidence extracted from studies conducted mainly on adult individuals. About 50% of these drugs, either the whole class or individual drugs within these classes, have not been studied in children or have limited evidence of safety in pediatric populations. Extending these recommendations to the pediatric populations and adolescents remains controversial (Neyro et al., 2018; Roberts et al., 2021; CPIC, 2022). Fortunately, efforts to better understand the potential utility for PGx implementation among the pediatric population are ongoing (Namerow et al., 2020; Ramsey et al., 2021; Roberts et al., 2021). Various models have been adopted by different institutes, from single gene to panels tested either preemptively or reactively while offering point of care electronic clinical decision support (eCDS) to clinicians (Johnson et al., 2013; Haidar et al., 2019). Concurrently, consortia such as the Sanford Children’s Genomic Medicine Consortium consisting of ten children’s’ hospitals across the US, has integrating PGx into pediatric care as a major goal of the consortium’s efforts utilizing genomics in pediatric medicine (Gregornik et al., 2021).

Similarly, knowledge gaps still exist with regards to PGx and drug-gene associations in the elderly populations. Morbidity, mortality, and health care costs due to adverse drug reactions (ADRs) in the elderly is a major public health concern although many of which are predictable and avoidable (Onder et al., 2013; Bozina et al., 2020; Roman et al., 2020; Hoel et al., 2021). With a growing aging population, the economic burden of management and hospitalizations due to ADRs will only be exacerbated (Maher et al., 2014; Formica et al., 2018; Perez-Jover et al., 2018; Malki and Pearson, 2020). Evidence is growing to support the utility of PGx in guiding treatment regimens in older patients (Bozina et al., 2020; Inventor and Paun, 2021). Significantly higher rates of hospitalizations are observed in patients with polypharmacy (5 or more drugs) who harbor large number of PGx polymorphisms compared to those with polypharmacy and no or less genetic variants, while the rates of hospitalizations decrease and cost savings per patient increase if PGx-guided treatment is followed (Finkelstein et al., 2016a; Finkelstein et al., 2016b; Brixner et al., 2016). While polypharmacy is a common problem among the aging population, extrapolating the value of PGx-guided treatment to all polypharmacy patients regardless of age, would be a reasonable practice. PGx studies with the goal of establishing recommendations for genetic testing in older patients either pre-emptively or reactively upon hospitalization is an endeavor worth consideration.

Healthcare settings: Primary care and rural communities

While most of drug prescriptions occur within primary care settings and despite robust evidence supporting the utility of PGx in medicine optimization, extending PGx implementation into primary care settings specially within rural communities remains challenging given the current models of clinical practice (Sudia, 2016; Dearing and Cox, 2018; Rollinson et al., 2020). Most PGx programs implemented to date are conducted within urban health care systems or large academic institutes (Houwink et al., 2015; Dawes, 2020; Leitch et al., 2022). Adding the current limited reimbursement available for PGx testing and the lack of providers comfort or literacy with PGx ordering to already existing problems in the rural communities such as physicians and health care providers shortages, lower socio-economic standards, less insurance coverage, and limited access to specialists, and then PGx implementation would easily be seen as an unattainable endeavor (Kogan et al., 2018; Johnston et al., 2019; Richman et al., 2019; Empey et al., 2021; Leitch et al., 2022). Yet the value of PGx to these resource-poor settings, in terms of improving the quality of healthcare by decreasing costs, reducing ADRs, and better management of polypharmacy should override such existing hurdles. To overcome PGx implementation barriers, innovative approaches need to be considered in such settings, such as improving access using telehealth tools or considering population-guided approaches to PGx (Patrinos, 2010; Mette et al., 2012; Naik et al., 2020). Additionally, given the novelty of PGx implementation in clinical practice, the availability of educational resources regarding PGx testing and related guidelines for both healthcare providers and patients becomes imperative (Haga, 2017; Amara et al., 2018). Without efforts to overcome the existing barriers to implementation of PGx and other personalized medicine initiatives in primary care and rural settings, one more layer of inequality in access to care will be added to an already underserved population.

Discussion

With the current rates and patterns of population growth in the US, health disparities that currently cost up to $320 billion annually, could grow to $1 trillion by 2040 (Asif Dhar et al., 2022). This is obviously unsustainable. Despite scientific and technological advancements that improved health outcomes in the US, prevalence of diseases and death rates remain significantly higher among certain disadvantaged populations. Precision medicine aims at improving health through the concept of preventing and treating diseases relying on individuals’ or populations’ specific genetic or environmental make-up and shifting away from empirical management (Collins and Varmus, 2015). In the same context, pharmacogenomics (PGx), a main component of precision medicine, aims at improving the clinical outcomes of pharmacotherapy. In addition to the hope that precision medicine and PGx initiatives would improve health outcomes, it was projected that inadvertently it will also help address existing health gaps (Griffith, 2020). We chose some of the well-studied determinants of health such as genetic ancestry, sex, and socioeconomic status, as well as less commonly investigated ones, such as age and healthcare setting, to review if PGx implementation in the recent years have shown success or promise towards addressing health disparities. For all those determinants, and despite areas of success or active research, major challenges continue to exist. There was limited evidence of coordinated efforts or strategies designed to implement PGx and other precision medicines programs that take into account inclusion and implementation within underserved or disadvantaged populations. To be able to garner the benefits of PGx, structural changes are needed in the way we conduct PGx research, from the point of choosing participants of diverse backgrounds, to the setting where the studies are conducted to ensure accessibility, to how evidence-based guidance is developed ensuring inclusivity. Engaging with patient advocacy groups and with community partners such as local clinicians and religious leaders to set priorities and strategies for addressing local needs helps build trust with the targeted communities. Addressing individual barriers of recruitment by offering compensation, transportation options, flexibility in scheduling as well as multi-linguistic material and plain language consents and study information are needed. Increasing outreach through expanding telemedicine technologies and utilizing social media platforms to improve health literacy and education campaigns is another strategy to increase engagement. Additionally, diversifying the research team to include lay persons from the targeted community, and encouraging minority trainees and early career faculty to be part of or lead research efforts is postulated to increase trust and enhance enrollment. Funding agencies can also play a role by incentivizing minority populations enrollment such as through supplemental awards for innovative approaches to recruit individuals from rural or underserved communities. Moreover, assigning a score for inclusion of women or minorities could be another approach that would positively impact recruitment and retention. Retraining of study section reviewers and scientific officers to identify bias could also be needed. Lastly, Institutional Review Boards (IRBs) should ensure research studies have enrolled people who represent the groups affected by the condition or disease studied and require researchers clearly outline their recruitment strategies (Brooks et al., 2015; Clark et al., 2019; Strauss et al., 2021; Thakur et al., 2021).

Moreover, many barriers to the implementation of PGx into clinical practice need to be addressed. Integration into clinical workflows need to be improved, efficient, user-friendly clinical decision support tools need to be developed, terminology and practice need to be standardized, cost-effectiveness needs to be proven, and lastly, clinician education is a cornerstone for any successful adoption or implementation (Klein et al., 2017; Amara et al., 2018; Giri et al., 2019). These barriers are expected to be even harder to address in communities with less or limited resources. Additionally, without regulatory and legislative efforts towards improving reimbursement for PGx testing as part of the effort to improve overall access to genomic medicine, the high out-of-pocket costs would be an additional obstacle for implementation within underserved populations.

Most of the work discussed in this review originates from the United States or the global north. Needless to say, the challenges and limitations identified and discussed with regards to the implementation of PGx or other precision medicine programs in relation to health disparities will be present at even larger scales in the global south and developing countries that have much limited resources or access to new innovations (Chong et al., 2018; Shih et al., 2022). Without meaningful partnerships between the north and the south, and without creative solutions, these underprivileged regions of the world will be further deprived of tools that carry a lot of promise to improve efficiency and guarantee equity in healthcare.

Author contributions

SS and YJ contributed to the conception and design of the work; SS wrote the manuscript; YJ reviewed and contributed to the manuscript; SS and YJ approved final version of the manuscript.

Funding

The University of Utah, Department of Pathology, University Development Funds and ARUP Research and development funds.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abou-Ismail, M. Y., Citla Sridhar, D., and Nayak, L. (2020). Estrogen and thrombosis: A bench to bedside review. Thromb. Res. 192, 40–51. doi:10.1016/j.thromres.2020.05.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Adusumilli, P., Konatam, M. L., Gundeti, S., Bala, S., and Maddali, L. S. (2017). Treatment challenges and survival analysis of human epidermal growth factor receptor 2-positive breast cancer in real world. Indian J. Med. Paediatr. Oncol. 38 (1), 22–27. doi:10.4103/0971-5851.203511

PubMed Abstract | CrossRef Full Text | Google Scholar

Ahsan, T., Urmi, N. J., and Sajib, A. A. (2020). Heterogeneity in the distribution of 159 drug-response related SNPs in world populations and their genetic relatedness. PLoS One 15, e0228000. doi:10.1371/journal.pone.0228000

PubMed Abstract | CrossRef Full Text | Google Scholar

Al-Sadawi, M., Hussain, Y., Copeland-Halperin, R. S., Tobin, J. N., Moskowitz, C. S., Dang, C. T., et al. (2021). Racial and socioeconomic disparities in cardiotoxicity among women with HER2-positive breast cancer. Am. J. Cardiol. 147, 116–121. doi:10.1016/j.amjcard.2021.02.013

PubMed Abstract | CrossRef Full Text | Google Scholar

Alzubiedi, S., and Saleh, M. I. (2016). Pharmacogenetic-guided warfarin dosing algorithm in african-Americans. J. Cardiovasc Pharmacol. 67, 86–92. doi:10.1097/FJC.0000000000000317

PubMed Abstract | CrossRef Full Text | Google Scholar

Amara, N., Blouin-Bougie, J., Bouthillier, D., and Simard, J. (2018). On the readiness of physicians for pharmacogenomics testing: An empirical assessment. Pharmacogenomics J. 18 (2), 308–318. doi:10.1038/tpj.2017.22

PubMed Abstract | CrossRef Full Text | Google Scholar

Asif Dhar, J. B., Neal, B., Rush, B., Gerhardt, W., and Davis, A. (2022). US health care can’t afford health inequities. Available from: https://www2.deloitte.com/us/en/insights/industry/health-care/economic-cost-of-health-disparities.html (Accessed November 10, 2022).

Google Scholar

Baran, Y., Pasaniuc, B., Sankararaman, S., Torgerson, D. G., Gignoux, C., Eng, C., et al. (2012). Fast and accurate inference of local ancestry in Latino populations. Bioinformatics 28 (10), 1359–1367. doi:10.1093/bioinformatics/bts144

PubMed Abstract | CrossRef Full Text | Google Scholar

Betcher, H. K., and George, A. L. (2020). Pharmacogenomics in pregnancy. Semin. Perinatol. 44 (3), 151222. doi:10.1016/j.semperi.2020.151222

PubMed Abstract | CrossRef Full Text | Google Scholar

Bierer, B. E., Meloney, L. G., Ahmed, H. R., and White, S. A. (2022). Advancing the inclusion of underrepresented women in clinical research. Cell. Rep. Med. 3 (4), 100553. doi:10.1016/j.xcrm.2022.100553

PubMed Abstract | CrossRef Full Text | Google Scholar

Birman-Deych, E., Radford, M. J., Nilasena, D. S., and Gage, B. F. (2006). Use and effectiveness of warfarin in Medicare beneficiaries with atrial fibrillation. Stroke 37 (4), 1070–1074. doi:10.1161/01.STR.0000208294.46968.a4

PubMed Abstract | CrossRef Full Text | Google Scholar

Bodin, L., Verstuyft, C., Tregouet, D. A., Robert, A., Dubert, L., Funck-Brentano, C., et al. (2005). Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106 (1), 135–140. doi:10.1182/blood-2005-01-0341

PubMed Abstract | CrossRef Full Text | Google Scholar

Bonifaz-Pena, V., Contreras, A. V., Struchiner, C. J., Roela, R. A., Furuya-Mazzotti, T. K., Chammas, R., et al. (2014). Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. PLoS One 9, e112640. doi:10.1371/journal.pone.0112640

PubMed Abstract | CrossRef Full Text | Google Scholar

Bozina, N., Vrkic Kirhmajer, M., Simicevic, L., Ganoci, L., Mirosevic Skvrce, N., Klarica Domjanovic, I., et al. (2020). Use of pharmacogenomics in elderly patients treated for cardiovascular diseases. Croat. Med. J. 61 (2), 147–158. doi:10.3325/cmj.2020.61.147

PubMed Abstract | CrossRef Full Text | Google Scholar

Braveman, P., and Gottlieb, L. (2014). The social determinants of health: it's time to consider the causes of the causes. Public Health Rep. 129 (2), 19–31. doi:10.1177/00333549141291S206

PubMed Abstract | CrossRef Full Text | Google Scholar

Bress, A., Patel, S. R., Perera, M. A., Campbell, R. T., Kittles, R. A., and Cavallari, L. H. (2012). Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics 13 (16), 1925–1935. doi:10.2217/pgs.12.164

PubMed Abstract | CrossRef Full Text | Google Scholar

Brixner, D., Biltaji, E., Bress, A., Unni, S., Ye, X., Mamiya, T., et al. (2016). The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy. J. Med. Econ. 19 (3), 213–228. doi:10.3111/13696998.2015.1110160

PubMed Abstract | CrossRef Full Text | Google Scholar

Brooks, S. E., Muller, C. Y., Robinson, W., Walker, E. M., Yeager, K., Cook, E. D., et al. (2015). Increasing minority enrollment onto clinical trials: Practical strategies and challenges emerge from the NRG oncology accrual workshop. J. Oncol. Pract. 11, 486–490. doi:10.1200/JOP.2015.005934

PubMed Abstract | CrossRef Full Text | Google Scholar

Bryc, K., Velez, C., Karafet, T., Moreno-Estrada, A., Reynolds, A., Auton, A., et al. (2010). Colloquium paper: Genome-wide patterns of population structure and admixture among hispanic/latino populations. Proc. Natl. Acad. Sci. U. S. A. 107 (2), 8954–8961. doi:10.1073/pnas.0914618107

PubMed Abstract | CrossRef Full Text | Google Scholar

Buhimschi, C. S., and Weiner, C. P. (2009). Medications in pregnancy and lactation: Part 1. Teratology. Obstet. Gynecol. 113 (1), 166–188. doi:10.1097/AOG.0b013e31818d6788

PubMed Abstract | CrossRef Full Text | Google Scholar

Bush, M. (2018). Addressing the root cause: Rising health care costs and social determinants of health. Rising Health Care Costs Soc. Determinants Health 79 (1), 26–29. doi:10.18043/ncm.79.1.26

PubMed Abstract | CrossRef Full Text | Google Scholar

Camidge, D. R., Park, H., Smoyer, K. E., Jacobs, I., Lee, L. J., Askerova, Z., et al. (2021). Race and ethnicity representation in clinical trials: Findings from a literature review of phase I oncology trials. Future Oncol. 17 (24), 3271–3280. doi:10.2217/fon-2020-1262

PubMed Abstract | CrossRef Full Text | Google Scholar

Care, A., Bellenghi, M., Matarrese, P., Gabriele, L., Salvioli, S., and Malorni, W. (2018). Sex disparity in cancer: Roles of microRNAs and related functional players. Cell. Death Differ. 25 (3), 477–485. doi:10.1038/s41418-017-0051-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Cdc. Health Disparities (2022). Division of adolescent and School health, national center for HIV/AIDS, viral hepatitis, STD, and TB prevention 2020. 10/24/2022]; Available from: https://www.cdc.gov/healthyyouth/disparities/ (Accessed November 10, 2022).

Google Scholar

Cfr (2022). Code of federal regulations. Available from: https://www.ecfr.gov/current/title-13/chapter-I/part-124/subpart-A/subject-group-ECFR4ef1291a4a984ab/section-124.103 (Accessed November 10, 2022).

Google Scholar

Chong, H. Y., Allotey, P. A., and Chaiyakunapruk, N. (2018). Current landscape of personalized medicine adoption and implementation in Southeast Asia. BMC Med. Genomics 11 (1), 94. doi:10.1186/s12920-018-0420-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Clark, L. T., Watkins, L., Pina, I. L., Elmer, M., Akinboboye, O., Gorham, M., et al. (2019). Increasing diversity in clinical trials: Overcoming critical barriers. Curr. Probl. Cardiol. 44, 148–172. doi:10.1016/j.cpcardiol.2018.11.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Claudio-Campos, K., Duconge, J., Cadilla, C. L., and Ruano, G. (2015). Pharmacogenetics of drug-metabolizing enzymes in US Hispanics. Drug Metab. Pers. Ther. 30 (2), 87–105. doi:10.1515/dmdi-2014-0023

PubMed Abstract | CrossRef Full Text | Google Scholar

Collins, F. S., and Varmus, H. (2015). A new initiative on precision medicine. N. Engl. J. Med. 372 (9), 793–795. doi:10.1056/NEJMp1500523

PubMed Abstract | CrossRef Full Text | Google Scholar

CPIC (2022). CPIC guidelines. Available from: https://cpicpgx.org/guidelines/ (Accessed November 10, 2022).

Google Scholar

Dandara, C., Ndadza, A., and Soko, N. (2022). The importance of including African populations in pharmacogenetics studies of warfarin response. Pharmacogenomics 23 (1), 1–4. doi:10.2217/pgs-2021-0142

PubMed Abstract | CrossRef Full Text | Google Scholar

Dawes, M. (2020). Pharmacogenetics in primary care. Healthc. Manage Forum 33 (3), 97–101. doi:10.1177/0840470419901285

PubMed Abstract | CrossRef Full Text | Google Scholar

Davis, B. H., and Limdi, N. A. (2021). Translational pharmacogenomics: Discovery, evidence synthesis and delivery of race-conscious medicine. Clin. Pharmacol. Ther. 10 (4), 909–925. doi:10.1002/cpt.2357

CrossRef Full Text | Google Scholar

Dearing, J. W., and Cox, J. G. (2018). Diffusion of innovations theory, principles, and practice. Health Aff. (Millwood) 37 (2), 183–190. doi:10.1377/hlthaff.2017.1104

PubMed Abstract | CrossRef Full Text | Google Scholar

Duconge, J., Cadilla, C. L., Seip, R. L., and Ruano, G. (2015). Why admixture matters in genetically-guided therapy: Missed targets in the COAG and EU-PACT trials. P. R. Health Sci. J. 34 (3), 175–177.

PubMed Abstract | Google Scholar

Empey, P. E., Pratt, V. M., Hoffman, J. M., Caudle, K. E., and Klein, T. E. (2021). Expanding evidence leads to new pharmacogenomics payer coverage. Genet. Med. 23 (5), 830–832. doi:10.1038/s41436-021-01117-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Enoch, M. A., Shen, P. H., Xu, K., Hodgkinson, C., and Goldman, D. (2006). Using ancestry-informative markers to define populations and detect population stratification. J. Psychopharmacol. 20, 19–26. doi:10.1177/1359786806066041

PubMed Abstract | CrossRef Full Text | Google Scholar

Essien, U. R., Dusetzina, S. B., and Gellad, W. F. (2021). A policy prescription for reducing health disparities-achieving pharmacoequity. JAMA 326 (18), 1793–1794. doi:10.1001/jama.2021.17764

PubMed Abstract | CrossRef Full Text | Google Scholar

Fda (2021). Adverse event reporting system. 2021 10/25/2022. Available from: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (Accessed November 10, 2022).

Google Scholar

FDA Coumadin (2022). (warfarin sodium) tablets Label. Available from: https://www.accessdata.fda.govdrugsatfda_docs (Accessed November 10, 2022).

Google Scholar

Fda Research (2019). Policy, and Workshops on Women in clinical trials. Available at: https://www.fda.gov/science-research/womens-health-research/fda-research-policy-and-workshops-women-clinical-trials (Accessed November 10, 2022).

Google Scholar

Finkelstein, J., Friedman, C., Hripcsak, G., and Cabrera, M. (2016). Pharmacogenetic polymorphism as an independent risk factor for frequent hospitalizations in older adults with polypharmacy: A pilot study. Pharmgenomics Pers. Med. 9, 107–116. doi:10.2147/PGPM.S117014

PubMed Abstract | CrossRef Full Text | Google Scholar

Finkelstein, J., Friedman, C., Hripcsak, G., and Cabrera, M. (2016). Potential utility of precision medicine for older adults with polypharmacy: A case series study. Pharmgenomics Pers. Med. 9, 31–45. doi:10.2147/PGPM.S101474

PubMed Abstract | CrossRef Full Text | Google Scholar

Flores, L. E., Frontera, W. R., Andrasik, M. P., Del Rio, C., Mondriguez-Gonzalez, A., Price, S. A., et al. (2021). Assessment of the inclusion of racial/ethnic minority, female, and older individuals in vaccine clinical trials. JAMA Netw. Open 4 (2), e2037640. doi:10.1001/jamanetworkopen.2020.37640

PubMed Abstract | CrossRef Full Text | Google Scholar

Formica, D., Sultana, J., Cutroneo, P. M., LuccheSi, S., Angelica, R., CriSafulli, S., et al. (2018). The economic burden of preventable adverse drug reactions: A systematic review of observational studies. Expert Opin. Drug Saf. 17 (7), 681–695. doi:10.1080/14740338.2018.1491547

PubMed Abstract | CrossRef Full Text | Google Scholar

Garcia-Pavia, P., Kim, Y., Restrepo-Cordoba, M. A., Lunde, I. G., Wakimoto, H., Smith, A. M., et al. (2019). Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation 140 (1), 31–41. doi:10.1161/CIRCULATIONAHA.118.037934

PubMed Abstract | CrossRef Full Text | Google Scholar

Gaskin, D. J., Thorpe, R. J., McGinty, E. E., Bower, K., Rohde, C., Young, J. H., et al. (2014). Disparities in diabetes: The nexus of race, poverty, and place. Am. J. Public Health 104 (11), 2147–2155. doi:10.2105/AJPH.2013.301420

PubMed Abstract | CrossRef Full Text | Google Scholar

Ginsburg, G. S., and Phillips, K. A. (2018). Precision medicine: From science to value. Health Aff. (Millwood) 37 (5), 694–701. doi:10.1377/hlthaff.2017.1624

PubMed Abstract | CrossRef Full Text | Google Scholar

Giri, J., Moyer, A. M., Bielinski, S. J., and Caraballo, P. J. (2019). Concepts driving pharmacogenomics implementation into everyday healthcare. Pharmgenomics Pers. Med. 12, 305–318. doi:10.2147/PGPM.S193185

PubMed Abstract | CrossRef Full Text | Google Scholar

Glover, L. M., Cain-Shields, L. R., Wyatt, S. B., Gebreab, S. Y., Diez-Roux, A. V., and Sims, M. (2020). Life course socioeconomic status and hypertension in african American adults: The jackson heart study. Am. J. Hypertens. 33 (1), 84–91. doi:10.1093/ajh/hpz133

PubMed Abstract | CrossRef Full Text | Google Scholar

Gregornik, D., Salyakina, D., Brown, M., Roiko, S., and Ramos, K. (2021). Pediatric pharmacogenomics: Challenges and opportunities: On behalf of the sanford children's genomic medicine consortium. Pharmacogenomics J. 21, 8–19. doi:10.1038/s41397-020-00181-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Griffith, D. M. (2020). Precision medicine approaches to health disparities research. Ethn. Dis. 30 (1), 129–134. doi:10.18865/ed.30.S1.129

PubMed Abstract | CrossRef Full Text | Google Scholar

Grinde, K. E., Qi, Q., Thornton, T. A., Liu, S., Shadyab, A. H., Chan, K. H. K., et al. (2019). Generalizing polygenic risk scores from Europeans to Hispanics/Latinos. Genet. Epidemiol. 43 (1), 50–62. doi:10.1002/gepi.22166

PubMed Abstract | CrossRef Full Text | Google Scholar

Gu, A., Yue, Y., Desai, R. P., and Argulian, E. (2017). Racial and ethnic differences in antihypertensive medication use and blood pressure control among US adults with hypertension: The national health and nutrition examination survey, 2003 to 2012. Circ. Cardiovasc Qual. Outcomes 10 (1), e003166. doi:10.1161/CIRCOUTCOMES.116.003166

PubMed Abstract | CrossRef Full Text | Google Scholar

Haas, D. M., Marsh, D. J., Dang, D. T., Parker, C. B., Wing, D. A., Simhan, H. N., et al. (2018). Prescription and other medication use in pregnancy. Obstet. Gynecol. 131 (5), 789–798. doi:10.1097/AOG.0000000000002579

PubMed Abstract | CrossRef Full Text | Google Scholar

Haidar, C. M., Relling, M. V., and Hoffman, M. (2019). Preemptively precise: returning and updating pharmacogenetic test results to realize the benefits of preemptive testing. Clin. Pharmacol. Ther. 106, 942–944.

PubMed Abstract | CrossRef Full Text | Google Scholar

Haga, S. B. (2017). Educating patients and providers through comprehensive pharmacogenetic test reports. Pharmacogenomics 18 (11), 1047–1050. doi:10.2217/pgs-2017-0088

PubMed Abstract | CrossRef Full Text | Google Scholar

Haga, S. B. (2010). Impact of limited population diversity of genome-wide association studies. Genet. Med. 12 (2), 81–84. doi:10.1097/GIM.0b013e3181ca2bbf

PubMed Abstract | CrossRef Full Text | Google Scholar

Hariprakash, J. M., Vellarikkal, S. K., Keechilat, P., Verma, A., Jayarajan, R., Dixit, V., et al. (2018). Pharmacogenetic landscape of DPYD variants in south Asian populations by integration of genome-scale data. Pharmacogenomics 19, 227–241. doi:10.2217/pgs-2017-0101

PubMed Abstract | CrossRef Full Text | Google Scholar

Herrington, D. M., and Klein, K. P. (1985). Invited review: Pharmacogenetics of estrogen replacement therapy. J. Appl. Physiol. 91 (6), 2776–2784. doi:10.1152/jappl.2001.91.6.2776

PubMed Abstract | CrossRef Full Text | Google Scholar

Hoel, R. W., Giddings Connolly, R. M., and Takahashi, P. Y. (2021). Polypharmacy management in older patients. Mayo Clin. Proc. 96 (1), 242–256. doi:10.1016/j.mayocp.2020.06.012

PubMed Abstract | CrossRef Full Text | Google Scholar

Houwink, E. J., Rigter, T., Swen, J. J., Cornel, M. C., Kienhuis, A., Rodenburg, W., et al. (2015). Pharmacogenetics in primary health care: Implementation and future expectations. Ned. Tijdschr. Geneeskd. 159, A9204.

PubMed Abstract | Google Scholar

Inventor, B. R., and Paun, O. (2021). Pharmacogenomics in older adults: An integrative review. Res. Gerontol. Nurs. 14 (4), 211–220. doi:10.3928/19404921-20210428-01

PubMed Abstract | CrossRef Full Text | Google Scholar

Irelli, A., Sirufo, M. M., D'Ugo, C., Ginaldi, L., and De Martinis, M. (2020). Sex and gender influences on cancer immunotherapy response. Biomedicines 8 (7), 232. doi:10.3390/biomedicines8070232

PubMed Abstract | CrossRef Full Text | Google Scholar

Ito, S. (2016). Mother and child: Medication use in pregnancy and lactation. Clin. Pharmacol. Ther. 100 (1), 8–11. doi:10.1002/cpt.383

PubMed Abstract | CrossRef Full Text | Google Scholar

Ivers, L. (2022). Social inclusion. 2022 10/24/2022]; Available from: https://www.worldbank.org/en/topic/social-inclusion (Accessed November 10, 2022).

Google Scholar

Jeibouei, S., Akbari, M. E., Kalbasi, A., Aref, A. R., Ajoudanian, M., Rezvani, A., et al. (2019). Personalized medicine in breast cancer: Pharmacogenomics approaches. Pharmgenomics Pers. Med. 12, 59–73. doi:10.2147/PGPM.S167886

PubMed Abstract | CrossRef Full Text | Google Scholar

Jeong, H. (2010). Altered drug metabolism during pregnancy: Hormonal regulation of drug-metabolizing enzymes. Expert Opin. Drug Metab. Toxicol. 6 (6), 689–699. doi:10.1517/17425251003677755

PubMed Abstract | CrossRef Full Text | Google Scholar

Ji, P., Gong, Y., Jiang, C. C., Hu, X., Di, G. H., and Shao, Z. M. (2020). Association between socioeconomic factors at diagnosis and survival in breast cancer: A population-based study. Cancer Med. 9 (5), 1922–1936. doi:10.1002/cam4.2842

PubMed Abstract | CrossRef Full Text | Google Scholar

Johnson, J. A., Caudle, K. E., Gong, L., Whirl-CarrilloM., , Stein, C. M., Scott, S. A., et al. (2017). Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther. 102 (3), 397–404. doi:10.1002/cpt.668

PubMed Abstract | CrossRef Full Text | Google Scholar

Johnson, J. A., and Cavallari, L. H. (2015). Warfarin pharmacogenetics. Trends Cardiovasc Med. 25 (1), 33–41. doi:10.1016/j.tcm.2014.09.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Johnston, K. J., Wen, H., and Joynt Maddox, K. E. (2019). Lack of access to specialists associated with mortality and preventable hospitalizations of rural medicare beneficiaries. Health Aff. (Millwood) 38 (12), 1993–2002. doi:10.1377/hlthaff.2019.00838

PubMed Abstract | CrossRef Full Text | Google Scholar

Johnson, J. A., Elsey, A. R., Clare-Salzler, M. J., Nessl, D., Conlon, M., and Nelson, D. R. (2013). Institutional profile: University of Florida and Shands Hospital Personalized Medicine Program: clinical implementation of pharmacogenetics. Pharmacogenomics 14, 732–736.

PubMed Abstract | CrossRef Full Text | Google Scholar

Kay, C., Martinez-Perez, C., Meehan, J., Gray, M., Webber, V., Dixon, J. M., et al. (2021). Current trends in the treatment of HR+/HER2+ breast cancer. Future Oncol. 17 (13), 1665–1681. doi:10.2217/fon-2020-0504

PubMed Abstract | CrossRef Full Text | Google Scholar

K. Bibbins-Domingo, and A. Helman (Editors) (2022). “National academies of sciences, engineering and medicine,” Improving representation in clinical trials and research: Building research equity for women and underrepresented groups (Washington, DC: The National Academies Press), 280.

Google Scholar

Klein, M. E., Parvez, M. M., and Shin, J. G. (2017). Clinical implementation of pharmacogenomics for personalized precision medicine: Barriers and solutions. J. Pharm. Sci. 106 (9), 2368–2379. doi:10.1016/j.xphs.2017.04.051

PubMed Abstract | CrossRef Full Text | Google Scholar

Kogan, J. N., Empey, P., Kanter, J., Keyser, D. J., and Shrank, W. H. (2018). Delivering on the value proposition of precision medicine: The view from healthcare payers. Am. J. Manag. Care 24 (4), 177–179.

PubMed Abstract | Google Scholar

Landrigan, P. J., Ferrer, L., and Keenan, J. (2021). COVID-19 and health disparities: Structural evil unmasked. Ann. Glob. Health 87 (1), 34. doi:10.5334/aogh.3225

PubMed Abstract | CrossRef Full Text | Google Scholar

LaVeist, T. A., Gaskin, D., and Richard, P. (2011). Estimating the economic burden of racial health inequalities in the United States. Int. J. Health Serv. 41 (2), 231–238. doi:10.2190/HS.41.2.c

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, H., Kim, D., Lee, S., and Fawcett, J. (2020). The concepts of health inequality, disparities and equity in the era of population health. Appl. Nurs. Res. 56, 151367. doi:10.1016/j.apnr.2020.151367

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, S. S., Fullerton, S. M., Saperstein, A., and Shim, J. K. (2019). Ethics of inclusion: Cultivate trust in precision medicine. Science 364 (6444), 941–942. doi:10.1126/science.aaw8299

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, Y. M., Manzoor, B. S., Cavallari, L. H., and Nutescu, E. A. (2018). Facilitators and barriers to the adoption of pharmacogenetic testing in an inner-city population. Pharmacotherapy 38 (2), 205–216. doi:10.1002/phar.2077

PubMed Abstract | CrossRef Full Text | Google Scholar

Leitch, T. M., Killam, S. R., Brown, K. E., Katseanes, K. C., George, K. M., Schwanke, C., et al. (2022). Ensuring equity: Pharmacogenetic implementation in rural and tribal communities. Front. Pharmacol. 13, 953142. doi:10.3389/fphar.2022.953142

PubMed Abstract | CrossRef Full Text | Google Scholar

Lim, G. B. (2017). Warfarin: From rat poison to clinical use. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2017.172

CrossRef Full Text | Google Scholar

Loibl, S., and Gianni, L. (2017). HER2-positive breast cancer. Lancet 389 (10087), 2415–2429. doi:10.1016/S0140-6736(16)32417-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Ma, J., Jemal, A., Fedewa, S. A., Islami, F., Lichtenfeld, J. L., Wender, R. C., et al. \ (2019). The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA Cancer J. Clin. 69 (5), 351–362. doi:10.3322/caac.21564

PubMed Abstract | CrossRef Full Text | Google Scholar

Madla, C. M., Gavins, F. K. H., Merchant, H. A., Orlu, M., Murdan, S., and Basit, A. W. (2021). Let's talk about sex: Differences in drug therapy in males and females. Adv. Drug Deliv. Rev. 175, 113804. doi:10.1016/j.addr.2021.05.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Magavern, E. F., Gurdasani, D., Ng, F. L., and Lee, S. S. J. (2022). Health equality, race and pharmacogenomics. Br. J. Clin. Pharmacol. 88 (1), 27–33. doi:10.1111/bcp.14983

PubMed Abstract | CrossRef Full Text | Google Scholar

Maher, R. L., Hanlon, J., and Hajjar, E. R. (2014). Clinical consequences of polypharmacy in elderly. Expert Opin. Drug Saf. 13 (1), 57–65. doi:10.1517/14740338.2013.827660

PubMed Abstract | CrossRef Full Text | Google Scholar

Malki, M. A., and Pearson, E. R. (2020). Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J. 20 (3), 355–366. doi:10.1038/s41397-019-0122-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Manteuffel, M., Williams, S., Chen, W., Verbrugge, R. R., Pittman, D. G., and Steinkellner, A. (2014). Influence of patient sex and gender on medication use, adherence, and prescribing alignment with guidelines. J. Womens Health (Larchmt) 23 (2), 112–119. doi:10.1089/jwh.2012.3972

PubMed Abstract | CrossRef Full Text | Google Scholar

Mauvais-Jarvis, F., Berthold, H. K., Campesi, I., Carrero, J. J., Dakal, S., Franconi, F., et al. (2021). Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 73 (2), 730–762. doi:10.1124/pharmrev.120.000206

PubMed Abstract | CrossRef Full Text | Google Scholar

Mette, L., Mitropoulos, K., Vozikis, A., and Patrinos, G. P. (2012). Pharmacogenomics and public health: Implementing 'populationalized' medicine. Pharmacogenomics 13 (7), 803–813. doi:10.2217/pgs.12.52

PubMed Abstract | CrossRef Full Text | Google Scholar

Mezzalira, S., and Toffoli, G. (2021). The effects of sex on pharmacogenetically guided drug treatment. Pharmacogenomics 22 (15), 959–962. doi:10.2217/pgs-2021-0088

PubMed Abstract | CrossRef Full Text | Google Scholar

Minkin, M. J. (2019). Menopause: Hormones, lifestyle, and optimizing aging. Obstet. Gynecol. Clin. North Am. 46 (3), 501–514. doi:10.1016/j.ogc.2019.04.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Moyer, A. M., de Andrade, M., Faubion, S. S., Kapoor, E., Dudenkov, T., Weinshilboum, R. M., et al. (2018). SLCO1B1 genetic variation and hormone therapy in menopausal women. Menopause 25 (8), 877–882. doi:10.1097/GME.0000000000001109

PubMed Abstract | CrossRef Full Text | Google Scholar

Moyer, A. M., Miller, V. M., and Faubion, S. S. (2016). Could personalized management of menopause based on genomics become a reality? Pharmacogenomics 17 (7), 659–662. doi:10.2217/pgs.16.17

PubMed Abstract | CrossRef Full Text | Google Scholar

Nagar, S. D., Moreno, A. M., Norris, E. T., Rishishwar, L., Conley, A. B., O'Neal, K. L., et al. (2019). Population pharmacogenomics for precision public health in Colombia. Front. Genet. 10, 241. doi:10.3389/fgene.2019.00241

PubMed Abstract | CrossRef Full Text | Google Scholar

Naik, H., Palaniappan, L., Ashley, E. A., and Scott, S. A. (2020). Digital health applications for pharmacogenetic clinical trials. Genes. (Basel) 11 (11), 1261. doi:10.3390/genes11111261

PubMed Abstract | CrossRef Full Text | Google Scholar

Namerow, L. B., Walker, S. A., Loftus, M., Bishop, J. R., Ruano, G., and Malik, S. (2020). Pharmacogenomics: An update for child and adolescent psychiatry. Curr. Psychiatry Rep. 22 (5), 26. doi:10.1007/s11920-020-01145-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Nasem Women and Health Research (1994). “Ethical and legal issues of including women in clinical studies: Volume I,” in Institute of medicine (US) committee on ethical and legal issues relating to the inclusion of women in clinical studies. Editors F. R. Mastroianni AC, and D. Federman (Washington (DC): National Academies Press US).

Google Scholar

Nathan, A. S., Geng, Z., Dayoub, E. J., Khatana, S. A. M., Eberly, L. A., Kobayashi, T., et al. (2019). Racial, ethnic, and socioeconomic inequities in the prescription of direct oral anticoagulants in patients with venous thromboembolism in the United States. Circ. Cardiovasc Qual. Outcomes 12 (4), e005600. doi:10.1161/CIRCOUTCOMES.119.005600

PubMed Abstract | CrossRef Full Text | Google Scholar

Neyro, V., Jacqz-Aigrain, E., and Adam de Beaumais, T. (2018). Pharmacogenetics and application in pediatrics. Therapie 73 (2), 157–163. doi:10.1016/j.therap.2017.11.010

PubMed Abstract | CrossRef Full Text | Google Scholar

Nih (2017). NIH policy and guidelines on the inclusion of women and minorities as subjects in clinical research, 2017. 10/26/2022]; Available from: https://grants.nih.gov/policy/inclusion/women-and-minorities/guidelines.htm (Accessed November 10, 2022).

Google Scholar

Nih (2004). “Understanding racial and ethnic differences in health in late life: A research agenda,” in National research council (US) panel on race, ethnicity, and health in later life. Editor A. N. Bulatao RA (Washington (DC): National Academies Press US).

CrossRef Full Text | Google Scholar

Nicholas Jones, R. M., Ramirez, R., and Merarys, R-V.US CENSUS (2021). 2020 census illuminates racial and ethnic composition of the country. [Online]. Available: www.census.gov/library/stories/2021/08/improved-race-ethnicity-measures-reveal-united-states-population-much-more-multiracial.htmlGoogle Scholar. [Accessed].

Google Scholar

Onder, G., van der Cammen, T. J. M., Petrovic, M., Somers, A., and Rajkumar, C. (2013). Strategies to reduce the risk of iatrogenic illness in complex older adults. Age Ageing 42 (3), 284–291. doi:10.1093/ageing/aft038

PubMed Abstract | CrossRef Full Text | Google Scholar

Ortega, V. E., and Meyers, D. A. (2014). Pharmacogenetics: Implications of race and ethnicity on defining genetic profiles for personalized medicine. J. Allergy Clin. Immunol. 133 (1), 16–26. doi:10.1016/j.jaci.2013.10.040

PubMed Abstract | CrossRef Full Text | Google Scholar

Paciuc, J. (2020). Hormone therapy in menopause. Adv. Exp. Med. Biol. 1242, 89–120. doi:10.1007/978-3-030-38474-6_6

PubMed Abstract | CrossRef Full Text | Google Scholar

Patrinos, G. P. (2010). General considerations for integrating pharmacogenomics into mainstream medical practice. Hum. Genomics 4 (6), 371–374. doi:10.1186/1479-7364-4-6-371

PubMed Abstract | CrossRef Full Text | Google Scholar

Perez-Jover, V., Mira, J. J., Carratala-Munuera, C., Gil-Guillen, V. F., Basora, J., Lopez-Pineda, A., et al. (2018). Inappropriate use of medication by elderly, polymedicated, or multipathological patients with chronic diseases. Int. J. Environ. Res. Public Health 15 (2), 310. doi:10.3390/ijerph15020310

PubMed Abstract | CrossRef Full Text | Google Scholar

Plumper, T., Laroze, D., and Neumayer, E. (2018). Regional inequalities in premature mortality in Great Britain. PLoS One 13 (2), e0193488. doi:10.1371/journal.pone.0193488

PubMed Abstract | CrossRef Full Text | Google Scholar

Popejoy, A. B. (2019). Diversity in precision medicine and pharmacogenetics: Methodological and conceptual considerations for broadening participation. Pharmgenomics Pers. Med. 12, 257–271. doi:10.2147/PGPM.S179742

PubMed Abstract | CrossRef Full Text | Google Scholar

Popejoy, A. B., and Fullerton, S. M. (2016). Genomics is failing on diversity. Nature 538 (7624), 161–164. doi:10.1038/538161a

PubMed Abstract | CrossRef Full Text | Google Scholar

Price-Haywood, E. G., Burton, J., Fort, D., and Seoane, L. (2020). Hospitalization and mortality among black patients and white patients with covid-19. N. Engl. J. Med. 382 (26), 2534–2543. doi:10.1056/NEJMsa2011686

PubMed Abstract | CrossRef Full Text | Google Scholar

Qureshi, S., Latif, A., Condon, L., Akyea, R. K., Kai, J., and Qureshi, N. (2022). Understanding the barriers and enablers of pharmacogenomic testing in primary care: A qualitative systematic review with meta-aggregation synthesis. Pharmacogenomics 23 (2), 135–154. doi:10.2217/pgs-2021-0131

PubMed Abstract | CrossRef Full Text | Google Scholar

Rademaker, M. (2001). Do women have more adverse drug reactions? Am. J. Clin. Dermatol 2 (6), 349–351. doi:10.2165/00128071-200102060-00001

PubMed Abstract | CrossRef Full Text | Google Scholar

Ramamoorthy, A., Bull, J., and Zhang, L. (2015). Racial/ethnic differences in drug disposition and response: Review of recently approved drugs. Clin. Pharmacol. Ther. 97 (3), 263–273. doi:10.1002/cpt.61

PubMed Abstract | CrossRef Full Text | Google Scholar

Ramos, E., Callier, S. L., and Rotimi, C. N. (2012). Why personalized medicine will fail if we stay the course. Per Med. 9 (8), 839–847. doi:10.2217/pme.12.100

PubMed Abstract | CrossRef Full Text | Google Scholar

Ramos, E., Doumatey, A., Elkahloun, A. G., Shriner, D., Huang, H., Chen, G., et al. (2014). Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics J. 14, 217–222. doi:10.1038/tpj.2013.24

PubMed Abstract | CrossRef Full Text | Google Scholar

Ramsey, L. B., Namerow, L. B., Bishop, J. R., Hicks, J. K., Bousman, C., Croarkin, P. E., et al. (2021). Thoughtful clinical use of pharmacogenetics in child and adolescent psychopharmacology. J. Am. Acad. Child. Adolesc. Psychiatry 60 (6), 660–664. doi:10.1016/j.jaac.2020.08.006

PubMed Abstract | CrossRef Full Text | Google Scholar

Ravindran, T. S., Teerawattananon, Y., Tannenbaum, C., and Vijayasingham, L. (2020). Making pharmaceutical research and regulation work for women. BMJ 371, m3808. doi:10.1136/bmj.m3808

PubMed Abstract | CrossRef Full Text | Google Scholar

Reeder-Hayes, K., Peacock Hinton, S., Meng, K., Carey, L. A., and Dusetzina, S. B. (2016). Disparities in use of human epidermal growth hormone receptor 2-targeted therapy for early-stage breast cancer. J. Clin. Oncol. 34 (17), 2003–2009. doi:10.1200/JCO.2015.65.8716

PubMed Abstract | CrossRef Full Text | Google Scholar

Ribisl, K. M., Winkleby, M. A., Fortmann, S. P., and Flora, J. A. (1998). The interplay of socioeconomic status and ethnicity on Hispanic and white men's cardiovascular disease risk and health communication patterns. Health Educ. Res. 13 (3), 407–417. doi:10.1093/her/13.3.407

PubMed Abstract | CrossRef Full Text | Google Scholar

Richman, L., Pearson, J., Beasley, C., and Stanifer, J. (2019). Addressing health inequalities in diverse, rural communities: An unmet need. SSM Popul. Health 7, 100398. doi:10.1016/j.ssmph.2019.100398

PubMed Abstract | CrossRef Full Text | Google Scholar

Robbins, A. S., Siegel, R. L., and Jemal, A. (2012). Racial disparities in stage-specific colorectal cancer mortality rates from 1985 to 2008. J. Clin. Oncol. 30 (4), 401–405. doi:10.1200/JCO.2011.37.5527

PubMed Abstract | CrossRef Full Text | Google Scholar

Roberts, T. A., Wagner, J. A., Sandritter, T., Black, B. T., Gaedigk, A., and Stancil, S. L. (2021). Retrospective review of pharmacogenetic testing at an academic children's hospital. Clin. Transl. Sci. 14 (1), 412–421. doi:10.1111/cts.12895

PubMed Abstract | CrossRef Full Text | Google Scholar

Rollinson, V., Turner, R., and Pirmohamed, M. (2020). Pharmacogenomics for primary care: An overview. Genes. (Basel) 11 (11), 1337. doi:10.3390/genes11111337

PubMed Abstract | CrossRef Full Text | Google Scholar

Roman, Y. M., Dixon, D. L., Salgado, T. M., Price, E. T., Zimmerman, K. M., Sargent, L., et al. (2020). Challenges in pharmacotherapy for older adults: A framework for pharmacogenomics implementation. Pharmacogenomics 21 (9), 627–635. doi:10.2217/pgs-2019-0198

PubMed Abstract | CrossRef Full Text | Google Scholar

Salmond, S., and Dorsen, C. (2022). Time to reflect and take action on health disparities and health inequities. Orthop. Nurs. 41 (2), 64–85. doi:10.1097/NOR.0000000000000828

PubMed Abstract | CrossRef Full Text | Google Scholar

Semakula, J. R., Kisa, G., Mouton, J. P., Cohen, K., Blockman, M., Pirmohamed, M., et al. (2021). Anticoagulation in sub-saharan Africa: Are direct oral anticoagulants the answer? A review of lessons learnt from warfarin. Br. J. Clin. Pharmacol. 87 (10), 3699–3705. doi:10.1111/bcp.14796

PubMed Abstract | CrossRef Full Text | Google Scholar

Shah, R. R., and Gaedigk, A. (2018). Precision medicine: Does ethnicity information complement genotype-based prescribing decisions? Ther. Adv. Drug Saf. 9 (1), 45–62. doi:10.1177/2042098617743393

PubMed Abstract | CrossRef Full Text | Google Scholar

Shen, A. Y., Yao, J. F., Brar, S. S., Jorgensen, M. B., and Chen, W. (2007). Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J. Am. Coll. Cardiol. 50 (4), 309–315. doi:10.1016/j.jacc.2007.01.098

PubMed Abstract | CrossRef Full Text | Google Scholar

Shen, A. Y., Yao, J. F., Brar, S. S., Jorgensen, M. B., Wang, X., and Chen, W. (2008). Racial/Ethnic differences in ischemic stroke rates and the efficacy of warfarin among patients with atrial fibrillation. Stroke 39 (10), 2736–2743. doi:10.1161/STROKEAHA.107.508580

PubMed Abstract | CrossRef Full Text | Google Scholar

Shendre, A., Dillon, C., and Limdi, N. A. (2018). Pharmacogenetics of warfarin dosing in patients of African and European ancestry. Pharmacogenomics 19, 1357–1371. doi:10.2217/pgs-2018-0146

PubMed Abstract | CrossRef Full Text | Google Scholar

Shih, Y. T., Pan, I. W., and Teich, N. (2022). Global challenges in access to and implementation of precision oncology: The health care manager and health economist perspective. Am. Soc. Clin. Oncol. Educ. Book 42, 429–437. doi:10.1200/EDBK_359650

PubMed Abstract | CrossRef Full Text | Google Scholar

Siegel, R. L., Sahar, L., Portier, K. M., Ward, E. M., and Jemal, A. (2015). Cancer death rates in US congressional districts. CA Cancer J. Clin. 65 (5), 339–344. doi:10.3322/caac.21292

PubMed Abstract | CrossRef Full Text | Google Scholar

Siegel, R., Ward, E., Brawley, O., and Jemal, A. (2011). Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61 (4), 212–236. doi:10.3322/caac.20121

PubMed Abstract | CrossRef Full Text | Google Scholar

Sirugo, G., Williams, S. M., and Tishkoff, S. A. (2019). The missing diversity in human genetic studies. Cell. 177 (1), 26–31. doi:10.1016/j.cell.2019.02.048

PubMed Abstract | CrossRef Full Text | Google Scholar

Sisodiya, S. M. (2021). Precision medicine and therapies of the future. Epilepsia 62 (2), S90–S105. doi:10.1111/epi.16539

PubMed Abstract | CrossRef Full Text | Google Scholar

Soldin, O. P., and Mattison, D. R. (2009). Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 48 (3), 143–157. doi:10.2165/00003088-200948030-00001

PubMed Abstract | CrossRef Full Text | Google Scholar

Strauss, D. H., White, S. A., and Bierer, B. E. (2021). Justice, diversity, and research ethics review. Science 371, 1209–1211. doi:10.1126/science.abf2170

PubMed Abstract | CrossRef Full Text | Google Scholar

Sudia, J. (2016). “Exploring barriers to the adoption of pharmacogenomic technology in the clinical setting by clinical healthcare providers,” in Health and medical sciences (South Orange, New Jersey: Seton Hall University Dissertations and Theses ETDs).

Google Scholar

Thakur, N., Lovinsky-Desir, S., Appell, D., Bime, C., Castro, L., Celedon, J. C., et al. (2021). Enhancing recruitment and retention of minority populations for clinical research in pulmonary, critical care, and sleep medicine: An official American thoracic society research statement. Am. J. Respir. Crit. Care Med. 204, e26–e50. doi:10.1164/rccm.202105-1210ST

PubMed Abstract | CrossRef Full Text | Google Scholar

Trivedi, A. N., Jiang, L., Silva, G., Wu, W. C., Mor, V., Fine, M. J., et al. (2020). Evaluation of changes in veterans affairs medical centers' mortality rates after risk adjustment for socioeconomic status. JAMA Netw. Open 3 (12), e2024345. doi:10.1001/jamanetworkopen.2020.24345

PubMed Abstract | CrossRef Full Text | Google Scholar

UN (2022). World population prospects 2022. Available from: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 (Accessed November 10, 2022).

Google Scholar

Venkatakrishnan, K., and Benincosa, L. J. (2022). Diversity and inclusion in drug development: Rethinking intrinsic and extrinsic factors with patient centricity. Clin. Pharmacol. Ther. 112 (2), 204–207. doi:10.1002/cpt.2416

PubMed Abstract | CrossRef Full Text | Google Scholar

Vinogradova, Y., Coupland, C., and Hippisley-Cox, J. (2019). Use of hormone replacement therapy and risk of venous thromboembolism: Nested case-control studies using the QResearch and CPRD databases. BMJ 364, k4810. doi:10.1136/bmj.k4810

PubMed Abstract | CrossRef Full Text | Google Scholar

Wall, E. H., Hewitt, S. C., Case, L. K., Lin, C. Y., Korach, K. S., and Teuscher, C. (2014). The role of genetics in estrogen responses: A critical piece of an intricate puzzle. FASEB J. 28 (12), 5042–5054. doi:10.1096/fj.14-260307

PubMed Abstract | CrossRef Full Text | Google Scholar

Weinstein, J. N. (2017). Communities in action: Pathways to health equity. Washington, DC: The National Academies Press. xxiv, 557.

Google Scholar

Wells, Q. S., Veatch, O. J., Fessel, J. P., Joon, A. Y., Levinson, R. T., Mosley, J. D., et al. (2017). Genome-wide association and pathway analysis of left ventricular function after anthracycline exposure in adults. Pharmacogenet Genomics 27 (7), 247–254. doi:10.1097/FPC.0000000000000284

PubMed Abstract | CrossRef Full Text | Google Scholar

Williams, D. R., Priest, N., and Anderson, N. B. (2016). Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 35 (4), 407–411. doi:10.1037/hea0000242

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, H. C., Chen, C. W., Lin, Y. T., and Chu, S. K. (2021). Genetic ancestry plays a central role in population pharmacogenomics. Commun. Biol. 4, 171. doi:10.1038/s42003-021-01681-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Zakharia, F., Basu, A., Absher, D., Assimes, T. L., Go, A. S., Hlatky, M. A., et al. (2009). Characterizing the admixed african ancestry of african Americans. Genome Biol. 10 (12), R141. doi:10.1186/gb-2009-10-12-r141

PubMed Abstract | CrossRef Full Text | Google Scholar

Zucker, I., and Prendergast, B. J. (2020). Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex. Differ. 11 (1), 32. doi:10.1186/s13293-020-00308-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: genetics, pharmacogenomics (PGx), disparities, equity, precision medicine

Citation: Shaaban S and Ji Y (2023) Pharmacogenomics and health disparities, are we helping?. Front. Genet. 14:1099541. doi: 10.3389/fgene.2023.1099541

Received: 15 November 2022; Accepted: 10 January 2023;
Published: 23 January 2023.

Edited by:

Youssef M. Roman, Virginia Commonwealth University, United States

Reviewed by:

Minoli A Perera, Northwestern University, United States
Umamaheswaran Gurusamy, University of California, San Francisco School of Medicine, United States
Robert J. Straka, University of Minnesota Twin Cities, United States

Copyright © 2023 Shaaban and Ji. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Sherin Shaaban, Sherin.shaaban@Aruplab.com

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.