Impact Factor 4.555

The Frontiers in Neuroscience journal series is the 1st most cited in Neurosciences

Perspective ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Cell. Neurosci. | doi: 10.3389/fncel.2018.00082

The enlightened brain: novel imaging methods focus on epileptic networks at multiple scales.

  • 1Institute of Ophthalmology, University College London, United Kingdom
  • 2Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, United Kingdom

Epilepsy research is rapidly adopting novel fluorescence optical imaging methods to tackle unresolved questions on the cellular and circuit mechanisms of seizure generation and evolution. State of the art two-photon microscopy and wide-field fluorescence imaging can record the activity in epileptic networks at multiple scales, from neuronal microcircuits to brain-wide networks. These approaches exploit transgenic and viral technologies to target genetically encoded calcium and voltage sensitive indicators to subclasses of neurons, and achieve genetic specificity, spatial resolution and scalability that can complement electrophysiological recordings from awake animal models of epilepsy. Two-photon microscopy is well suited to study single neuron dynamics during interictal and ictal events, and highlight the differences between the activity of excitatory and inhibitory neuronal classes in the focus and propagation zone. In contrast, wide-field fluorescence imaging provides mesoscopic recordings from the entire cortical surface, necessary to investigate seizure propagation pathways, and how the unfolding of epileptic events depends on the topology of brain-wide functional connectivity. Answering these questions will inform pre-clinical studies attempting to suppress seizures with gene therapy, optogenetic or chemogenetic strategies. Dissecting which network nodes outside the seizure onset zone are important for seizure generation, propagation and termination can be used to optimise current and future evaluation methods to identify an optimal surgical strategy.

Keywords: Epilepsy, wide-field Ca2+ imaging, 2-photon imaging, seizure, in vivo imaging

Received: 05 Feb 2018; Accepted: 08 Mar 2018.

Edited by:

Marco Ledri, Lund University, Sweden

Reviewed by:

Marco Canepari, UMR5588 Laboratoire Interdisciplinaire de Physique (LIPhy), France
Stefano Taverna, San Raffaele Hospital (IRCCS), Italy  

Copyright: © 2018 Rossi, Kullmann and Wykes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence:
Dr. Luigi F. Rossi, University College London, Institute of Ophthalmology, Cruciform Building, Gower Street, London, WC1E, United Kingdom,
Dr. Robert Wykes, Institute of Neurology, University College London, Department of Clinical and Experimental Epilepsy, 8th Floor Queen Square House, Queen Square, London, WC1N 3BG, LONDON, United Kingdom,