Impact Factor 3.900 | CiteScore 4.22
More on impact ›

Mini Review ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Cell. Neurosci. | doi: 10.3389/fncel.2019.00520

Mechanisms of homeostatic synaptic plasticity in vivo

 Hey-Kyoung Lee1* and Alfredo Kirkwood2
  • 1Neuroscience, Johns Hopkins University, United States
  • 2Johns Hopkins University, United States

Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are many mechanisms that can endow homeostatic control, sliding threshold and synaptic scaling are unique in that they operate by providing homeostatic control of synaptic strength. The former mechanism operates by adjusting the threshold for synaptic plasticity, while the latter mechanism directly alters the gain of synapses. Both modes of homeostatic synaptic plasticity have been studied across various preparations from reduced in vitro systems, such as neuronal cultures, to in vivo intact circuitry. While most of the cellular and molecular mechanisms of homeostatic synaptic plasticity have been worked out using reduced preparations, there are unique challenges present in intact circuitry in vivo, which deserve further consideration. For example, in an intact circuit, neurons receive distinct set of inputs across their dendritic tree which carry unique information. Homeostatic synaptic plasticity in vivo needs to operate without compromising processing of these distinct set of inputs to preserve information processing while maintaining network stability. In this mini review, we will summarize unique features of in vivo homeostatic synaptic plasticity, and discuss how sliding threshold and synaptic scaling may act across different activity regimes to provide homeostasis.

Keywords: sliding threshold, metaplasticity, BCM theory, synaptic scaling, Cortical Plasticity, Homeostasis, Hebbian plasticity

Received: 29 Aug 2019; Accepted: 06 Nov 2019.

Copyright: © 2019 Lee and Kirkwood. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Prof. Hey-Kyoung Lee, Johns Hopkins University, Neuroscience, Baltimore, 21218, MD, United States,