ORIGINAL RESEARCH article
Front. Aging Neurosci.
Sec. Neurocognitive Aging and Behavior
Volume 17 - 2025 | doi: 10.3389/fnagi.2025.1640378
This article is part of the Research TopicDecoding Neuroplasticity: Innovations in fMRI Methodologies and Disease InsightsView all 5 articles
Altered brain dynamics in Post-Stroke cognitive and motor dysfunction
Provisionally accepted- 1900th Hospital of the People's Liberation Army Joint Logistic Support Force, Fuzhou, China
- 2Fujian Medical University, Fuzhou, China
- 3Fujian University of Traditional Chinese Medicine, Fuzhou, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Current research is predominantly focused on the single dysfunction after stroke, but the potential changes in brain dynamics of post-stroke cognitive and motor dysfunction (PSCMD) remain unclear, which hinders a deep understanding of its rehabilitation effects. Therefore, the objective is to explore the dynamic brain network characteristics of PSCMD.Methods: The clinical features and resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 75 patients with post-stroke motor dysfunction (PSMD), 33 patients with PSCMD, and 35 healthy controls (HCs).Hidden markov model (HMM) was employed for the rs-fMRI data, aiming to identify the repetitive states of brain activity while further assessing the temporal properties and activation patterns in PSCMD. Additionally, the correlation between the HMM state characteristics and clinical scale scores was systematically evaluated.Result: Five HMM states were ultimately identified. According to the results, PSMD and PSCMD groups showed significant changes in the dynamics of spatiotemporal attributes versus HCs, including fractional occupancy (FO), Lifetime (LT), and transition probability (TP). Furthermore, PSCMD patients exhibited greater FO than PSMD (p = 0.006) in state 3. State 3 was mainly characterized by low activation of sensorimotor and higher-order cognitive networks,as well as the high activation of the right prefrontal-parietal network, which may reflect adaptive changes in the brain after PSCMD. Besides, the FO of HMM state 3 exhibited a negative connection with the MoCa score (r = -0.389, p = 0.025).Conclusion: An abnormal dynamic brain reorganization pattern could be observed in PSCMD patients. Neuromodulation strategies can be optimized by HMM-derived brain states in the future.
Keywords: Stroke, Motor dysfunction, cognitive and motor dysfunction, Hidden markov model, Dynamic Functional Connectivity
Received: 03 Jun 2025; Accepted: 07 Aug 2025.
Copyright: © 2025 Liu, Song, Zhuang, Wang, Zhang and Qin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Yin Qin, 900th Hospital of the People's Liberation Army Joint Logistic Support Force, Fuzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.